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P.I.: Dr. N. Singh

Brief Summary, of Work Performed Since August 1993:

We have systematically investigated the microprocesses occurring when a magnetic flux tube

refills with a cold plasma. The study was performed using simulations based on a small-scale PIC

code. The results of this study are summarized in two companion papers which are submitted for

publication in the Journal of Geophysical Research [Singh and Leung, 1994a, b]. In Paper 1

[Singh and Leung, 1994a] we have studied the role of ion-beam driven instabilities in filling a

magnetic flux tube. Large-scale models of plasmaspheric refilling have revealed that during the

early stage of the refilling counterstreaming ion beams are a common feature. However, the

instability of such ion beams and its effect on refilling remain unexplored. The difficulty with

investigating the effect of ion-beam driven instability on refilling is that the instability and the

associated processes are so small-scale that they cannot be resolved in large-scale models;

typically the instabilities have scale lengths of a few tens of plasma Debye length, which is a few

meters at the most, and the spatial resolution in large-scale models is at least several tens of

kilometers. Correspondingly, the temporal scale of the instability is by several orders of

magnitude smaller than the temporal resolution afforded by the models. In order to learn the

basic effects of ion beam instabilities on refilling, we have performed numerical simulations of the

refilling of an artificial magnetic flux tube. The shape and size of the tube are assumed so that the

essential features of the refilling problem are kept in the simulation and at the same time the

small-scale processes driven by the ion beams are sufficiently resolved. Two types of simulations

have been performed; in one type we treat ion kinetically and electrons are assumed to obey the

Boltzmann law. In the other type both electrons and ions are treated kinetically. A comparison

between the results from such simulations reveal that in the latter type of simulations electron-ion

(e-i) and ion-ion (i-i) instabilities occur and significantly modify the evolution of the plasma

density distributions in the flux tube along with the total plasma content. When the electron

dynamics is simplified by the assumption of the Boltzmann law, both the electron-ion and ion-ion

instabilities are inhibited, and only in very late stage of the filling there is a weak scattering of ions

due to an enhanced plasma fluctuation level. On the other hand, when electrons are treated

kinetically, the e-i instability occurs at an early stage when ion beams are too fast to excite the i-i





instability. The former instability heats the electrons so that conditions for the latter instability are

eventually met. The i-i instability and its non-linear evolution creates potential structures

including several electrostatic shock pairs which significantly modify the filling prd_ess. The

electrostatic potential structures are highly dynamic, and at times they appear as moving double

layers greatly affecting the state of the plasma inside the central region of the flux tube.

In Paper 2 [Singh and Leung, 1994b] we have studied the effects of equatorially trapped hot

plasma on refilling. Equatorially trapped hot plasmas are a common feature of the outer

plasmasphere, where flux tube refilling with cold ionospheric plasma occurs aider magnetic

storms. The role of the hot plasma consisting of hot anisotropic ions and isotropic warm

electrons in the refilling process is examined by means of numerical simulations using a one-

dimensional particle-in-cell code. Simulations are performed on the filling of an artificial flux tube

having a minimum magnetic field at its center. We have performed two types of simulations; in

one type, called here Run-A, we allowed cold plasmas to flow into a centrally trapped hot plasma

consisting of warm isotropic electrons and hot anisotropic ions with perpendicular temperature

T.L> _, the parallel temperature. Run-A reveals a variety of plasma processes relevant to the

plasmaspheric refilling affected by the presence of a hot plasma, including formation of

propagating electrostatic shocks, intrinsically unstable plasma distribution functions produced by

the mixing of hot and cold plasmas, weak downward electric fields supported by an extended

potential distribution in the relatively late stage of the evolution of plasma in the flux tube, and an

enhanced flux tube filling. In the other type of simulation first a cold plasma flow was allowed to

set up in the flow, then a hot plasma consisting of the isotropic electrons and anisotropic ions

(T± > _) was suddenly injected into the central region of the flux tube. In this case the main

distinguishing feature was the formation of relatively stable shocks near the mirror points of the

centrally trapped hot plasma. The shocks were found to be standing, unlike in the previous type

of simulation. Since the standing shocks form near the effective mirror points of the centrally

trapped hot ions, they are called mirror shocks to contrast them from the moving electrostatic

shocks seen ill Run-A. The stability of the standing shocks was found to increase with the

decreasing temperature of the warm electrons injected with the hot plasma. Wherever possible,

similarities between the results from the simulations and those from observational data are

pointed.

Tasks for the Grant Period Beginnin_ August 1, 1994:

After the investigations based on small-scale simulations reported in Papers 1 and 2, we

propose to include the processes seen in these simulations in large-scale hydrodynamic and

semikinetic models for the plasmaspheric refilling. We will first attempt to include the effects of





electron-ion instability in terms of electron heating. For this purpose we must develop an

algorithm for the electron heating rate as the ion beams evolve during the refilling. After this

phase of the work, we will attempt to include the effects of ion-ion instability on the plasma.

Since the ion-ion instability leads to the formation of vortices and electrostatic shocks, it is not

clear at this time how to include its effect in the large-scale models. We propose to investigate
this issue.

One of the interesting results from the small-scale simulations is that the mixing of cold

plasma with the equatorially trapped hot plasma produces low energy ring distributions in the

perpendicular velocity. Such a distribution function is known to excite the lower hybrid and ion-

Bernstein waves. We propose to investigate the stability of the distribution functions seen in the

one-dimensionai model by performing 2-dimensional PIC simulations, which will allow us to study

transverse heating of the cold ions. Our main goal here will be to critically examine the conditions

under which the ion heating produces the trapped ion population merged with a cold core as

observed from DE-I [Olsen et al, 1987].
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COST ESTIMATE FOR A ONE-YEAR PERIOD

(August 1, 1994 - July 31, 1995}

Third year funding for NAGW-2128

A. SALARIES AND WAGES

1. Dr. N. Singh, Principal Investigator •

25% x 3 weeks x $1,589.74/wk.

25% x 6 weeks x $1,675.68/wk.

25% x 31 weeks x $1,742.70/wk.

25% x 11 weeks x $1,742.70/wk.

2. Secretary

5% x 3/12 yr. x $18,889

5% x 9/12 yr. x $19,645

3. Undergraduate Research Assistant

15 hr. wk. @ $5.20/hr.

TOTAL SALARIES AND WAGES

B. FRINGE BENEFITS 121% A.I. & A.2.)

C. OPERATING COSTS

1. Supplies, reproduction

2. Page charges

TOTAL OPERATING COSTS

D. TRAVEL

1. See below

TOTAL DIRECT COST

E. INDIRECT

1. 42.0% MTDC

2. 42.5% MTDC

TOTAL INDIRECT

TOTAL ESTIMATED COST

/1/

FY'94 FY'95

8/1/94-9/30/94 10/1/94-7/31/96

1,192

2,514

13,506

4,792

236

737

/2/

/3/

/4/

014

4.956 21,999

828 3.997 _iii

125 320iili!!!
o i, 6ooii_iii

125 1. 920

0 1,280

5,909 29,196

2,482 O

O

2.482 12.408 i_::iiii:_i

• UAH changes from a quarter to semester academic year beginning 8/19/94. This change affects the way

an academic appointment's time is computed, UAH's annual merit increase occurs on October 1. The four
components of Dr. Singh's salary listed above are:

3 weeks of summer 1994 17/1/94-8J'18/94) figured on the weekly rate of an FY'94 academic year 139 weeks)
base of $62.000 ($62.000/39(

6 weeks of academic year 1995 (8/19/94-9/30/95) figured on the weekly rate of the new semester academic
year (37 weeks) from the $62,000 base. ($62.000/37)

31 weeks of the remainder of the 1995 academic year figured on the new base of $64,480 (4% increase)
($64,480/37)

11 weeks of summer 1995 (May 15-June 30) at same weekly rate as academic year 1995

D.1. Travel to professional meeting to present paper/Washington, DC used for estimation purposes = $1,280

air fare = $623 (travel agent quote), per diem = $144 x 3days (GSA rate), registration = $125, misc = $50

/1/ See paragraph 2.a. of financial data sheet

/2/ See paragraph 2.b. of financial data sheet

/3/ See paragraph 2.c. of financial data sheet

/4/ See paragraph 2.d, of financial data sheet

TOTAL

22,004

973

3.978

26,955

4,825

445

6OO

2,045

1,280

35,105

2,482

12,408

14,890

$49,995]





FINANCIAL DATA SHEET

1. Price Summary

The cost estimate presents applicable pricing information in tile standard format adopted by the University.

2. Cost Substantiation

a. Salaries:

Proposed salaries are quoted as actuals and are increased by 4.0 percent each fiscal year to cover anticipated raises. These increases

are MERIT, not cost-of-living, raises. Percentage of time is estimated. Salaries are verifiable through the established payroll system and after-the-fact certification of effort.

b. Fringe benefits:

Paid absences such as vacation, sick leave, and holidays are included in salaries and are charged as a direct expense as negotiated inthe indirect rate.

Fringe benefits are charged as a direct expense. They include State Teachers' Retirement, Teachers' Insurance and Annuity

Association--The College Retirement Equities Fund, social security, disability insurance, and life insurance where applicable. Graduate Research
Assistants receive tuition assistance as a fringe benefit in lieu of salary.

e. Travel:

Reimbursement of travel will be in accordance with The University of Alabama travel regulations. Expenses for out-of-state travel will

be paid on the basis of actual, reasonable, and necessary expenses. Expenses for in-state travel will be paid on a per diem basis. Transportation
costs will be reimbursed on the basis of actual costs for common carrier and at the approved rate per mile for automobiles.

d. Indirect Rate:

The University negotiates its pro-determined indirect rate with the Department of Health and Human Services. The provisional tinnegotiation) indirect rates are as follows:

FY'94 FY'95 FY'96 FY'97 FY'94 FY'95 FY'96 FY'97

On-campus Research 42.0% 42.5% 43.0% 43.0% Off-campus Research 26.0% 26.0% 26.0% 26.0%
On-campus Instruction 62.6% Off-campus Instruc. 25.9 %

On-campus Public Service 39.4% Off-campus Pub. Scr. 26.0%

These rates are based on Modified Total Direct Costs (MTDC). Indirect is not chargcd on capital expenditures such as equipment, alterations, and

renovations. Only the first $25,000 of each subcontract is subjcet to indirect rates and participant support costs to not incur indirect.

e. Approved Procurement System:

1994. The UAH procurement system has hccn approved hy the Department of the Navy, Office of Naval Research, through September 30,

3. Government Agency Contacts:

Administrative Contracting Officer :

Office of Naval Research Resident Representative
Atlanta Arca Office

101 Marietta Tower

Suite 2805

Atlanta, GA 30303

ATTN: Charles K. Hayes (NASA aw:lrds)
404-730-9255

ATI'N: Kathy L. Raible (All other awards)
407-730-9262

Audit Functions:

DHHS/OIG

Office of Audit

Federal Building
P.O. Box 1704

Atlanta, GA 30301

ATTN: Michael D. Gciger, Audit Mgr.
404-331-2446

4. Awards:

Resulting contracts or grants sh_uld bc forwarded to:

Research Administration

The University of Alab.'|nla in lhmtsville

Research lnstltute/Room I:,-39

lluntsville, AL 35899

205-895-6000; 205-895-6677 (fax)

RE-001 The University of Alabama in Huntsville
March i994





CERTIFICATION REGARDING DRUG-FREE REQUIREMENTS

(Grants/Cooperative Agreements)

A. The grantee certifies that it will provide a drug-free workplace by:

1. Publishing a statement notifying employees that the unlawful manufacture, distribution, dis-

pensing, possession or use of a controlled substance is prohibited in the grantee's workplace and specify-
ing the actions that will be taken against employees for violations of such prohibition:

2. Establishing a drug-free awareness program to inform employees about:

(a.) The dangers of drug abuse in the workplace;

(b.) The grantee's policy of maintaining a drug-free workplace;

(c.) Any available drug counseling, rehabilitation, and employee assistance programs;
(d.) The penalties that may be imposed upon employees for drug abuse violations

occurring in the workplace.

3. Making it a requirement that each employee to be engaged in the performance of the grant be
given a copy of the statement required by paragraph 1.

4. Notifying the employee in the statement required by paragraph 1 that, as a condition of em-
ployment under the grant, the employee will:

(a.) Abide by the terms of the statement, and

(b.) Notify the employer of any criminal drug statute conviction for a violation

occurring in the workplace no later than five days alter suchconviction.

5. Notifying the agency within ten days after receJvin,.., notice under subparagraph 4(h), with re-
spect to any employee who is so convicted.

6. Taking one of the following actions, within 30 days of receiving notice under subpara,_,raph
4(b), with respect to any employee who is so convicted:

(a.) Taking appropriate personnel action against such an employee, up to and includin,,
termination, or e

(h.) Requiring such employee to participate satisfactorily in a dru- abuse or

rehabilitation program approved for such purposes by a Federal, State or local
health, htw entorcement, or other appropriate agency.

7. Making a good faith effort to continue to maintain a drue-free workplace through
implementation of paragraphs 1, 2, 3, 4, 5, and 6.

B. The grantee shall insert in the space provided below the site(s) for the performance of the work done
in connection with specific grant:

Place of Perfl_rmance: The University of Alahama in Huntsville. _.0tsville, Madison Co. AL

Resp,,nsible Uni,,ersity Official: ,_ _/_. _..b.a.j__ff- iT/_ _, / }

Sue B, Weir, Research Adn_inistrator Date

Title/ldentificati_m of Applicable Research Proposal: UAH Proposal 94-430





CERTIFICATION REGARDING DEBARMENT, SUSPENSION, AND
OTHER RESPONSIBILITY MATTERS --

PRIMARY COVERED TRANSACTIONS

(1.) The prospective primary participant certifies that, to the best of its
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(a.) Are not presently debarred, suspended, proposed for debarment, de-

clared ineligible, or voluntarily excluded from covered transactions by any Federal de-
partment or agency.

(b.) Have not within a three-year period preceding this proposal been

convicted or had a civil judgment rendered against them for commission of fraud

performing a public (Federal, State or local) transaction or contract under a public

transaction; violation, theft, forgery, bribery, falsification or destruction of records,
making false statements, or receiving stolen property.

(c.) Are not presently indicted or otherwise criminally or civilly charged

by a government entity (Federal, State, or local) with commission of any of the
offenses enumerated in paragraph (1 .)(b.) of this certification; and

(d.) Have not within a three-year period preceding this

application/proposal had one or more public transactions (Federal, State, or local)
terminated for cause or default.

(2.) Where the prospective primary participant is unable to certify to any of the

statements in this certification, such prospective participant shall attach an explanation
to this proposal
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the entering into of any cooperative agreement, and the extension, continuation,
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INTERACTION OF FIELD-ALIGNED COLD PLASMA FLOWS WITH AN EQUATORIALLY-TRAPPED HOT

PLASMA: ELECTROSTATIC SHOCK FORMATION

Nagendra Singh '_3A ._8£5 8/

Department of Electrical and Computer Engineering, University of Alabama in Huntsville

Abstract. Effects of equatorially trapped hot plasma on

the highly supersonic cold-plasma flow occurring during

early stage plasmaspheric refilling are studied by means

of numerical simulations. It is shown that the equatori-

ally trapped hot ions set up a potential barrier for the

cold ion beams and facilitate formation of electrostatic

shocks by reflecting them from the equatorial region. Sim-

ulations with and without the hot plasma show different

flow properties; the formation of electrostatic shocks oc-

cur only in the former case. The simulation with the hot

plasma also reveals that the magnetic trapping in con-

junction with the evolution of the electrostatic potential

barrier produces ion velocity distribution functions con-

sisting of a cold core and a hot ring in the perpendicular

velocity. Such a distribution function provides a source

of free energy for equatorial waves. The corresponding

electron population is warm and field aligned.

Introduction

So far most theoretical studies on plasmasphefic refill-

ing have been primarily concerned with the outflow of cold

ionospheric plasma and its trapping in the flux tube. In

such theoretical studies an important observational fact,

which has been ignored, is that the flux tubes undergo-

ing refilling contain a hot plasma population trapped in

the equatorial region. Such plasmas originate from the

ring current or the plasma sheet and are characterized by

T_ > Tq_r, where T,_ and Ti_ are the perpendicular and

parallel temperatures of the hot ions, respectively. Spe-

cific observations of such hot ions having relatively large

pitch angle anisotropies (Ai = T,_/Ti_I > 2) come from

GEOS-1 and -2, which observed the hot ions in the en-

ergy range > 10 keV in the noon sector. Such hot ions

are known to excite electromagnetic ion cyclotron waves [

Roux et al., 1982].

Another set of observations, where the role of hot

plasma has been invoked, deals with thermal ions trans-

versely heated to energies up to a few hundred eV and

trapped in the equatorial region [Olsen et al., 1987]. Here

again hot ions are suggested to be the source of free en-

ergy for exciting the broadband waves observed from DE-

1. Theories suggest that the broadband waves are driven

by a combined effect of temperature anisotropy and ring

type of distributions of energetic protons [Perraut et al.,

1982 1. The effect of heating of the thermal ions on re-

Copyright 1993 by the American Geophysical Union.

Paper number 93GL00492

0094-8534/93/93GL-00492503.00

filling has been studied [Singh and Chan, 1992], but the

direct effect of the hot ions on the refilling has not been

studied so far.

The purpose of this letter is to show that the hot

anisotropic ions, which are commonly present in the equa-

torial region of flux tubes undergoing refilling and drive

the equatorial processes discussed above [01Jen
et aI., 1987; Rouz et al., 1982], facilitate the process of

electrostatic shock formation since they provide an effec-

tive potential barrier for the upflowing ion beams of cold

ionospheric plasma. The shock formation occurs even for

highly supersonic ion beams which are expected to occur

during early stage refilling [Banks et al., 1971; Singh et al.,

1986; Rasmussen and Schunk, 1988; Singh, 1990; Wilson

et al., 1992]. If the hot plasma consists of isotropic elec-

trons and anisotropic biMaxwellian ions with anisotropy

Ai = T_/T/_I > 1, the potential difference between the
equator, where the minimum magnetic field strength is

Bin, and an ionospheric point where the magnetic field

is B, is given by q' = kT,_/e[1 + Tffl/T,]-_ ln(F), where

F = Ai(1 - B,,,/B) + B,,,/B [Whipple, 1977].

Since Bm/B << 1, the equatorial potential with respect

to the ionosphere for T, << Tffl is ¢ -_ (kT,/e)ln(Ai). For

Ai = 2 and kT,,/e = 10 V, the typical values for these pa-

rameters used in wave analysis [Rouz et al., 1982], q_ _-

7 V. However, this potential difference is true when no

ionospheric cold plasma is present; i,a the presence of a

cold plasma, it is not certain how large the potential dif-

ference is and how it is distributed along the field line.

In the following discussion, we present results from nu-

merical simulations elucidating the interactions between

cold and hot plasmas when the former plasma flows into

the latter one trapped in a magnetic mirror. The simula-

tion presented here is small scale, in contrast to the large-

scale problem in space. Therefore, the results presented

here only serve the purpose of elucidating the processes

involved in hot-cold plasma interactions.

Numerical Model

We perform a one-dimensional particle-in-cell simula-

tion of plasma flow along an artificial flux tube (Figure

la). The magnetic field B(X) = B0(l - a exp[-(X -

d/2)2/o'2]) where B0 is a constant field outside

the minimum-field region, d is the size of the simulation

system and the choice of ct and _r determines the desired

field distribution. The hot plasma is created by injecting a

large number of electrons and ions in the minimum-B field

region. Such plasma particles are chosen from Maxwellian

or bi-Maxwellian velocity distributions depending upon

the requirement of a sinmlation run. The cold plasma

flows into the flux tube from the two plasma reservoirs at

799
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80O Singh: Hot-Cold Plasma Interactions

the ends of the simulation system at X = 0 and X = d

(Figure la). The simulation technique is described in
Singh and Chart [1992]. We sotve for the motions
of charged particles in self-consistent electric fields, de-
termined by solving Poisson's equation. As the particles
move in the flux tube, their magnetic moments are as-
sumed to be conserved.

In the cold-plasma reservoirs electron and ion temper-
atures are To. The reservoirs supply a continuous flux of

charged particles into the flux tube through the process
of plasma expansion. Ill the simulations reported here,
we have used rni/m, = 400, which adequately separates
the electron and ion time scales and, at the same time,

allows computationally feasible runs. The hot plasma is
injected into the central region of the simulation system
at time t=0 (Figure la). The properties of the hot plasma
are described later. Numerical parameters of the simula-

tions are as follows: system size d = 5 xl0 s An, B field
parameters a = 0.9, # = 750 )_d, cell size Az = 20 Ad, and

-1
time step At = 0.1%_0, where Ad and W_o are the Debye
length and electron-plasma frequency in the cold plasma
reservoirs. In the following discussion we have used nor-

malized quantities defined as follows: time f = twin,, dis-
tance JC = X/Ad, velocity V = V/Vt, and electric poten-

tied 4' = e¢/kTo, where Vt, = (kTo/m,) _/2 and win, =

(m, lrm)ll2_o.

Numerical Results

First we present results from a simulation in which
"equatorial" hot plasma is not included. This simula-
tion serves as a reference against which the hot plasma

effects on the cold plasma flow are compared. Figures lb
to If show the temporal evolution of the flow of cold ions
into the flux tube from the reservoirs shown in Figure la.

These panels show the phase-space plots in the X - Ivil
plane. Each dot in the figure represents an ion, giving

its parallel velocity and position. The simulation begins
at t = 0, when plasmas from the reservoirs begin to flow

Cold
Plasma I/or plasma i = 200 6

x--o x--a _A-0-6

7 .4--- .:

o 1 2 3 4 s o a 2 3 4 s

_(10oox_)

Fig. 1. (a) Artificial flux tube in which plasma expands
from the cold plasma reservoirs at X=0 and X=d. The
hot plasma is injected in the central region. (b) to (f)

ion phase-space plots in X - _i plane at selected times as
shown. The plots show evolution of the cold plasma flow
in absence of a hot plasma.

in the flux tube. The corresponding flow of electrons is

not shown here. Figure lb shows expanding ion beams
into the simulation region at _ = 200. The plot for _ =
1,000 (Figure lc) shows that the ion beams have expanded
from one end to the other end of the simulation region,

setting up counterstreaming. Equatorial shock formation
has not occurred. At this'time, ion beams are too fast

to couple through the ion-ion instability; the relative flow
velocity between the beams is V,,l = 0.4Vt, _ 8c,, where
c, is the local ion-acoustic speed at the equator, X = d/2,
and is about .05Vt¢. However, at later times the beams

become progressively slower as the plasma accumulates in
the flux tube, and when they become sufficiently slow in

the regions near the ends of the flux tube they excite ion-
ion instability as seen for /" > 1,400 (Figures ld to lf);
the instability creates vortex-like structures in the phase

space.
The instability is seen to thermalize the ion beams (Fig-

ure le). However, in the middle of the simulation region,
where the magnetic field is minimum, counterstreaming
of ion beams is seen to persist.

Simulation with a hot plasma in the region of mini-

mum magnetic field reveals a quite different behavior of
the flow. We performed several simulations by varying the
temperatures of the hot plasma but kept ion anisotropy
Ai >1 and electron anisotropy A, = 1 and 7", << T,_.

Such properties of hot plasma have been measured [Rouz

et al., 1982]. Relative densities of the cold (nc) and hot
(nil) ions in their respective source regions were also var-
ied. The results from such a parametric study will be re-

ported elsewhere. We present results here for Ti_I = Till2

= 900T0, T_ = 107"0, and nc _- 100 hR.
The hot plasma is injected in the central region 2300 <:

z/_,t < 2700 at t = 0, when cold plasma flows begin from
the reservoirs. Figure 2 shows the evolution of the cold
plasma flow along with the potential and density profiles
in the flux tube. The panels a to d show the ion phase

space plot in X - VIIplane. The phase-space plot of ions in
X - Vx plane is shown in panels e to h. The evolution of

the potential profiles in the flux tube is shown in panels i to
l, and the corresponding plasma density is shown in panels
m to p. The evolution of the electron phase-space (X- VII)
is shown in panels q to t. As shown on the top of the figure,
the columns from left to right show the properties of the
flow at t = 100, 500, 700, and 1000, respectively. At an

early time ([ = 100), the flow can be characterized by the

following features: (1) expanding cold ion beams (panel
a), (2) equatorially trapped ions originating from the hot
plasma (panel e), (3) a potential maximum at the mid-
point of the simulation region (panel i), and (4) a density
maximum coinciding with the potential maximum (panel

m). The density maximum at this time entirely represents
the trapped hot ions, and there is no contribution from the

cold plasma flow.
At _ = 500, the cold plasma flow comes into contact

with the hot plasma; the cold ion beams have somewhat

penetrated into the region of the hot plasma (panels b
and f). Already the cold beams show the sign of retar-
dation by the potential barrier. The slowing down of the
ion beams enhances the potential barrier further; panel j
shows that at [ = 500 the equatorial potential maximum

has grown to 15kTo/e, in contrast to 3kTo/e at t = 100.
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Fig. 2. Evolution of the cold plasma flow in the presence of equatorially trapped hot ions. Each column shows the

state of the plasma at times shown at the top. (a) to (d) X - VII phase-space plots for ions, (e) to (h) X - Vj. phase

,pace plots for ion, (i) to (1) Potential distributions, (m) to (p) Ion density distributions, and (q) to (t) Electron

phase-space plots in X - VII plane.

Note the change in the vertical scale between panels i and

j. The filling of the flux-tube with the cold plasma changes

the density profile by creating a density minimum at the

equator (panel n).

The plots at t = 700 show that the contact between

the hot and cold plasma has evolved into a pair of elec-

trostatic shocks, one on each side of the hot ions trapped

in the minimum-B field region. The shocks are indicated

by arrows where flow velocities of the cold ion beams sud-

denly decrease (panel c). Near the shocks, the potential

profile shows sharp jumps (panel k) and the density profile

shows spikes (panel o).

The shocks propagate away from the "equatorially"

trapped hot plasma towards the end of the flux tube,

thermalizing the cold plasma just behind the shocks. The

= 2400

-5.0 -2.5 0.0 2.5 5.0

_o1_- ..... ]

O.O01 0.01 0.1 1.0 10

Fig. 3. Ion velocity distribution functions in the equato-

rial region (a) Parallel velocity distribution, (b) Perpen-

dicular velocity distribution.

propagation of shocks can be seen by comparing the pan-

els in columns for t" = 700 and 1000. The shocks propa-

gate with a speed V,h _ 0.09Vt, _- C,,, where C,, is the

ion-acoustic speed in the cold plasma reservoirs. As the

shocks propagate away from the hot plasma, the thermal-

ized cold plasma behind the shocks punches through the

region of hot plasma where the potential barrier existed

earlier. This penetration of the cold plasma is clearly

seen from the X - V± plots shown in Figure 2e to 2h.

As the cold ions penetrate into the minimum-B field re-

gion, where hot ions are trapped, they cool adiabaticlly

as clearly seen from these plots. The penetration of cold

plasma is accompanied with a reduction in the potential
barrier, caused by the cold electrons being accelerated into

the high potential region (panels r and s); these electrons
tend to neutralize the effect of the hot ions stably trapped

in the minimum-B field region.

A noteworthy feature of the plasma after the spatial

mixing of hot and cold plasmas is the nature of the re-

sulting ion distribution functions in the equatorial region,

as shown in Figures 3a and 3b. The parallel velocity dis-

tribution function (Figure 3a) shows a core of cold ions
superimposed on a warm ion population. The perpendic-

ular velocity distribution function (Figure 3b) also shows

the cold ions, but the hot ions appear as a beam. Since

the ions in the beam are nearly uniformly distributed in

their phase, the beam is actually a ring in the perpendic-
ular velocity space. The ring distribution function is the

result of the trapping of the hot ions in the magnetic mir-
ror in combination with the evolution of the electrostatic

potential distribution. Some of the ions from the hot pop-

ulation having relatively small perpendicular velocities are

lost from the mirror due to the parallel electric fields. In

the absence of the electrostatic potential, one expects a



8O2 Singh:Hot-ColdPlasmaInteractions

loss-conedistribution.Thelossofions with relatively low

Va_, yields the ring distribution. The cold core originates

from the cold ions penetrating in the minimum-B field re-

gion. The importance of these findings lies in the fact that

ring types of distribution functions along with a core of

cold ions can be a source of free energy for exciting equa-

torial waves [Lee and Birdsall, 1979], which can heat the

latter ions. We point out that the low energy end of the

ring distribution found here occurs at an energy of a few

tens of eV, unlike the relatively energetic ring distribution

with energy > 5 keV observed from GEOS [Perraut et al.,

19821.

Conclusion and Discussion

The main conclusions of the study in this paper are the

following: (1) The presence of the hot anisotropic ions

trapped in the equatorial region can drastically affect the

flow of the cold plasma. (2) The potential barrier associ-

ated with such a hot ion population facilitates formation
of electrostatic shocks even when the cold ion beams com-

ing from the ionosphere are highly supersonic. (3) The

eventual mixing of the hot and cold plasmas produces a

potentially unstable velocity distribution function for the

ions. They develop a ring distribution in the perpendic-

ular velocity. The ring distribution with Of(V±)/OT¢_ be-

gins at a relatively low energy corresponding to the energy

of an ion falling down the potential barrier of the order of

10 V. The ring distribution discussed here is different from

the observed high energy rings (> 5 keV) produced by hot

plasma injection and its subsequent convection [Perraut et

hi., 1982].

Recent satellite observations have shown that equato-

rially trapped warm ions are generated by equatorial per-

pendicular heating of the thermal ions; the heating is

caused by waves generated by an energetic hot ion popula-

tion, having the temperature anisotropy T_ > T/_ l and/or

ring type of velocity distribution [OIJen et al., 1987; Per-

taut et hi., 1982 ]. Olsen el al. [1987] also report the
reflection of cold ion beams. However, it is believed that

the reflection is caused by the potential barrier set up

by the thermal ions which have undergone the transverse

heating. From our sinmlations, it appears that the hot

ion population, which drives the waves by virtue of its

anisotropy or ring, may reflect the fast ion beams at an

earlier stage before the waves grow and consequent ion

heating produces a warm anisotropic ion population.

Futhermore, before thermal ions are heated they must

enter the hot plasma region. This entry is retarded by the

potential barrier set up by the hot ions. Even if the hot

plasma injection occurs at a stage when field-aligned flows

have set up at the equator, the potential barrier is likely

to expel the cold plasma from the equatorial region. The

presence of thermal ions is essential in the wave generation

processes. Therefore, it is suggested that the reflection of

ion beams observed from DE-1 may not be necessarily

caused by the equatorial perpendicular heating of ther-

mal ions; it appears that the reflection of ion beams and

heating of thermal ions are all driven by the hot ions, but

heating should phenomenologically follow tlle reflection of

upflowing ion beams.
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Comparison of hydrodynamic and semikinetic treatments for a
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Abstract. Hydrodynamic and semikinetic treatments of plasma flow along closed geomagnetic
field lines are compared. The hydrodynamic treatment is based on a simplified 16-moment set
of transport equations as the equations for the heat flows are not solved; the hear flows are
treated heuristically. The semikinetic treatment is based on a particle code. The comparison
deals with the distributions of the plasma density, flow velocity, and parallel and perpendicular
temperatures as obtained from the two treatments during the various stages of the flow subject
to certain assumed boundary conditions. In the kinetic treatment, the appropriate boundary
condition is the prescription of the velocity distribution functions for the particles entering the
flux tubes at the ionospheric boundaries; those particles leaving the system are determined by
the processes occurring in the flux tube. The prescribed distributions are half-Maxwelfian with
temperature To and density no. In the hydrodynamic model, the prescribed boundary
conditions are placed on density (no), flow velocity (Vo), and temperature (To). We found that
results from the hydrodynamic treatment critically depend on Vo; for early stages of the flow
this treatment yields results in good agreement with those from the kinetic treatment, when
;I, = (tTo / 2=m)u_, which is the average velocity of particles moving in a given direction for a
Maxwellian distribution. During this early stage, the flows developing from the conjugate
ionospheres show some distinct transitions. For the first hour or so, the flows ate higidy
supersonic and penetrate deep into the opposite hemispheres, and both hydrodynamics and
kinetic treatments yield almost similar features. It is found that during this period heat flow
effects are negligibly small. When a flow penetrates deep into the opposite hemisphere, the
kinetic treatment predicts reflection and setting up of counterstreaming. In contrast, the
hydrodynamic treatment yields a shock in the flow. The reasons for this difference in the two
treatments is discussed, showing that in view of the relatively warm ions, the coupling of ion
beams and the consequent shock formation in the off-equatorial region are not likely due to the
enhancements in the beam temperatures. The counterstreaming in the kinetic treatment and
the shock in the hydrodynamic treatment first advance upward to the equator and then
downward to the ionospheric boundary from where the flow originated. The transit time for
this advancement is found to be about 1 hour for the perspective models. ARer 2 hours or so,
both models predict that the flows from the ionospheric boundaries are generally subsonic with
respect to the local ion-sound speed. At late stages of the flow, when a substantial fraction of
ions entering the flux tube begin to return back in the kinetic treatment, the hydrodynamic
treatment with the boundary condition Vo= (kro /2=m) u= yields an overrefilling, and the
choice of Vo becomes uncertain.

1. Introduction

In connection with the problem of plasmasphericrefilling, in
recent years several models for plasma flow along closed
magnetic field liens have been developed [_ et al.,
1984; Singh et al, 1986; Singh et al, 1988; Ra.smas.cenand
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Schunk, 1988; Singh et al.. 1991; Guiter and Gombosi, 1990,
Wilson et at, 1992]. These models differ in complexity in

terms of de_bing the plasma and in including the ionosphere
as a sourea of plasma for the refiUing. In terms of describing the
plasmaand the molt contrastingfeatureoftheexistingmodels

dealswith the hydrodynamicend kinetictreatmenm for the

flow_ based on plamna fluid equagom and a perticle-in-cefi
code, respectively. Fer the purpose of including the i_
as a source of plamm fcf the refilling, in moet studies the
topside ionmphere m replac_ by a set of boundary conditions
on the plamm flow, except by Guiter aud Gombo_ [1990], who
have includedthe generationand loss of plasma through

chemical reactimm in a hydrodynamic model. In this paper, we

are mainly _ with the ueamumts of the p_ with
simple sets of boundary conditions on the plasma flo_, we
compete the pmpmim of the plasma aloog closed field lines as
given by hydrodymunic [Singh ¢t al, 1992] and semikinetic

[g_bon eta/, 1992] treatments.
Tbe _e_ of a h_c treatmem depen, h on the

problem being solved and on the ingenuity of the _ in
choeai_ the hie_mr.hy of mom_t equafi_ m which fluid
equatiom am based. In mc_t ye_, _ in
physica have used fluid _ptiow based on 13-moment
[Schunk, 1977; Mitchell and Palmadesso, 1983], and 16-
moment [Barakat and Svhmdr, 1982; Ganguli and Pa_,
1987; Gombo_ and_tttu_, 1991; Korosmev-,cy et al., 1992,
1993] set of tramp_ equatiom. In developing the moment
equations, the insenuity lies ina series expa_on of the plasma
dimibmiou function using a __ian distribution function
as a base. Therffom hydrodynamic treatnumt based on moment

equatiom are good as long m the distribution function is close to
a biMaxwellian. Whea the dis_-ibetion function _.vc:ely departs
from a biMaxwellian and involves mnlfistreammg of plasma

perticles, the mommt equaticm are seriously handicapped,
despite the sophistication of the hisher-order mommt equatiom
used.

As mentioned above, recent modeL5 for plamnaspheric

refilling are based on both a kinetic treatment using panicle-in-
cell (PIC) code and a hydrodynamic ¢eaunent with varying
degrees of sophis6catim in choosing the hiemw.hy of the
mom_t _luatiom. In _ early mode_ only cxmtinmty and
momentum equatitms were solved for the ions, and the electrons
w_e assumed to remain isothermal [Singh et aL, 1986;
_uxcen and Schunk, 1988; Singh, 1988]. Studies that

included _ equatiom assumed that either the heat

flow is given by the cnlfisi_ thermal condactivity
[ghazzmov et aL, 1984; Cruiter and Gombasi, 1990] or ignored
the heat flow completely [Singh, 1992; Singh and Chon, 1992].
Neither of these assmnptions correctly describe the heat

in the ref_mg problem (Singh and Hormtz, 1992]. In
the collisionless limit of plasma flow during refilling, the usual
description of heat flow in terms of Spitzer thermal conductivity
breaks down, and such a _t overestima_ the heat flow.
When the heat flow becomes large, the validity of such

equations ceases, and numexical ins_ilities result in
computational work. Since , a priori it is not known when a

large heat flow develops in a model treating plasma flow m a
flux tube cxte_i_ to altitudes of several Earth radii, ad hoc
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dampingmechanimasare included to damp the heat flow
whether it is physically warranted or not {Palmade.sso ct aL,

1988, also C. E. _, private communication& 1993]. In
modeling of plasma flow at relatively low altitudes, where
collisional effects are important, the above problem with the
heart flow does not appear to be of a major concern [Kormmez_
eta/., 1992].

Deg_te the above difficulties with the hydrodynamic
treatment, it has been used for practical reasons because it
provides simplicity and comiderable economy m computational

and depending on the pla.mm conditions it can work
successfully. Therefore it is advisable to keep in mind the
assumptions made in using this treatnumt and, if possible, it is
evm better to check the validity of this treatment by comparing
its prediction against that from a kinetic treamznt. Such a

comperism may reveal whm and how a fluid model sucoceds.
The purpose of this paper is to carry out a conqmnson

between models of the plasma flows along closed field
based on kinetic and hydrodynamic tre_me_. The former
_reatment usea a PIC code for ious [Wilson et ai., 1992]. The
laUer one us_ transport equations for the flow of mass,
momentum, and parallel and perpendicular _ of icm
[S/ngh, 1992], but the heat flow is treated hemi_cally [Mctz/er
eta/., 1979]. In both the _ts, eloctrm_ sre assmned to
obey the Bolt_mana law. In the present paper the i_c
outflows is included by _ a set of boundary conditions on
the flow of ices at an altitude of 2000 kin. The choice of

altitude is lamarily due to the edsting models [wa_n et al.,

1992; Singh, 1992] in which ionospheric loss and generation
processes for the pl&mna nre not yet included.

The closed field lines provide the possibility of a variety of
flow conditions ranging fi'om highly _c to subsonic

flows as an empty flux robe refills. Furtherma_ the flows along
closed fields linea develop counterstreaming due to

in_c plasma flowu. Since hydrodymunic treatments
are most suspect under _ situations [Man_'mtr
et aL, 1976], the compmLson carried out here provides a useful
guide for assessing the validity and usefulness of a
hydrodynamic treatment.

We have found that for the conditions of highly supersonic

flo_¢3, the two.steam hydrodynamic 1zeatm_ yields flow
properties in good agreement with that from the semilfiaetic
trexane_t. Donar_ and Schunk [1991] reported a similar
agreement based on 16-moment set of equatio_ including heat
flows. We find that the bulk patmneten such as the density,
flow velocity, and tempmmm_ are in good agreement ev¢_ for

the simpler hydrodynamic model when heat flow is included
heuristically, the reason being simply that when the flow is
highly supersonic, the dominant Uansport of heat is through the
bulkflow velocity and the transport due to the thermal effects is

negligibly small.
When reflection of flows causes countmsUeaming, the

hydmdynam/c¢eatmest givesrisetoshockformation,which is
not see_ from the kinetic treatment. An examination of the
shock formation through ion-ion instability shows that off-

equatorialshock formation is inhibitedby an unfavorable

temperatureconditions on electron to ion temperature ratio.The
issueof the equatorial shock formation remains unsettled here
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due to the coarseness of the _ and temporal re_lutiom in
both the kinetic and hydrodynamic models. When the
coun_ flows become subsonic, the hydrodymmic and
semikinetic treatment again produce flow properties m

reasouable agreement.
In order to _ plasma flow in speca:, the plasma treatm_t

must be supplemented by a set of boundary conditiom on the
flow equation. For the closed field lines, the boendmy
conditio_ ere _ by the tmmde ionosphere. The

betmdary conditions along with the demand for plasma at high
altitudes _ the flow. The io_enc boundary conditions
involves generation and loss of ionospheric plasma particle
species. Since here oer Immary goal is in i,t_ntifying the _e_c
and fiuidlike behaviors of plasma flow and not the supply of

plasma from the i_ and the refilling rate, s_e have
shnulated the outflow of ionospheric plAcma by impoczing a _t

of boundary conditions at an altitude of 2000 km in both the
hemispheres. In the semikinetic model, the imposed boundary
conditionison the velocity distribution function of the ions

entering the flux tube. It is as,mined to be half-Maxwellian. The
returning pemcles are self-comist_tly determined. In the
hydtedymmic model theboundaryconditiom are the moezms
of such a dimibution. Since the kinetic effect dealing with the

returning particles are lost in the hydrodymmiic model the
hydrodynamic model does not agree with the kinetic model
when returning ion flux becomes sufficiently large. Can this
disagreement be resolved by a more sophisticated Ueamt_t of
the heat flow by using a complete set of 16-moment equations7
Inordertoanswerthisquestion,furthor comperative m_dies are

mgseste_
The rest of the peper is organized as follows. The theoretical

modelsm-edescribedInsection2.The comparisonbetwesnthe

resultsfi-omthetwo modelsiscamed outinsection3.The mmn

conclusionsof the paper and theirdiscussionare given m

sect/on4.

2. Theoretical Models

The sere/kinetic model, wh/ch is based on a particle-m-ceU

code, has been previously described forbothopen [Wilson et al.,

1990]and closed[Wilsonetal.,1992]fluxtubes.Coulomb
collisions are included in the model, the collisions are

implemented by pairing simulation ions accordingto an

algorithm which _es energy and momentum [T_
Abe, 1977]. The alg_iti_ _el&5 good _Ol__ for

the collisions when the collisional relaxation time is shorter than

the time step in advancing the ion motion. In the hydrodyxmnuc
model, we solve the plasma transport equations based on 16-
moment appm_omation [e.g.,Ganguli and Paimade_o, 1987,
andBarakatandSchunk, 1982] :

8n D I _A

'_f +'_ ("v) = -"v A ,9_ (l)

cTtr _ e.E_(k/m)_._Hs_(k/m)Tv t 1 8nW+T t vv]= .,
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-g,_,)- _t/,,,× r, - _1_ -_- +[-zt, (2)

(3)

II _ A +r ar_lL- -L (4)

where t is time, r is the geocentric distance along the flux
tube, s is the di.muw_ along the tube fi'oea the northera

iom_heric bouad_ at /_ = +Ao (see Figure 1); n, V, T,, and
T_ are the number density, flow velocity, and parallel and

perpendicular mmpemtmes of ions in the plasma flow,
respectively; qu and q± are the heat fluxes along the magnetic
field line _ with T, and /'_. respectively; E is the
pared electric field; gm is the component of the gravitational
force peralld to the magnetic field, and m and • are the ion

and c,N_e, respectively. The collision terms denoted by
[L are calculatedusing Burghs Formulae [Burger,1969],

which are modified to include flow velocity c_xe_ons [Mitchell
and Palmadesao, 1983, Ganguli and Palmade.sao, 1987] and the
cztte_on for tempenma_ mfmaOWy [lchimaru et al., 1973,
Singh. 1991].

We do not solve the heat flow equation_ which have proven
to be quite Ixoublesome to solve numerically [Paimade_o et al.,
198g]. The difficulty _ for a relatively large heat flow, for
which the moment equations themselves become invalid. Since
it is unpredictable in a model when the heat flow may be large,
ad hoc procedures are employed to attenuate the heat flow for
thenumericalstabilityofthemodels.Thishas been foundtobe

true irrespective of the numericaJtechniquesused for solvingthe
equations [Palmadesao et aL, 1988; Ko_ et aL, 1992,
1993; also C. E. Ra.nn_, private communication, 1993].

Inthispaper,insteadwe have includedthe effects ofheat

flow heuristicallyby closelyfollowingthe treatmentsm solar

wind studies[e.g.,Met=letetaI.,1979].In a collisionless

plasmatheusualpictureofheatflow,givenby qo=-KoVT"o

with K, as the thermal ca_iucfivity, may not be valid because

L, the mean flee path, is >>Lr=(T-Ic,-l'l_s) -I , the scale
lengthin the temperature variation.In such a coUisionless

situation, the heat flux can be calculated on physical ground as

follows. The unidirectional heat fluxes qf and q._ across a
surface in a pl_cmR described by a biMaxweUian distribution
function with parallel and perpendicular temperatm_ T, and

T_. respectively, say along the magnetic field veer. are given
by

(5)

#_=.k_ (I,T,/2am)_:_ (6)
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In a uniform plasma for which the distribution fimction is
independ_t of the pm,aUel _te, the heat flow at any point
is zero becau._ he_ flux in a given direction is _ed by the

heat flux in the opposite direction. In the prmesw_ of a spatial
inhomogmeity, the cancellation is not complete, and the heat

fluxes q, and q_ appearinginequations(3)and (4)an be
heuristicallywritUmm [Mr_ a aL. 1979]

q. = _,Tn*T.r,. (7)

where the subseript a standsfor .I. or II, s=-t if

o_r'=/Sa>O, aud s=l if dT=/Sa<O.Thusinthchcatflow
model adopted here, only the sign of the heat flux depends on
the temperature _-a_imt andnot its magnitude. The factor n
detmmmes the redaction in the heat flow below the

unidirectionalfluxes in (5)and (6). _ on inthispaperwe

show that r/ in the rangesay O.I - 0.3 yieldsresultsin a

_t with the kinetic model, in which heat
fluxes appear self_y. A similar model for heat flow
was used by Sinffh [1992] for plam_ flow along open field lines.
In both the hydrodynmmc and kinetic models adopted here,
electric field E is calculated by assuming that the electrons obey
the Bolr_n_m_ law and the condition of quasi-nantr_ty

prevails.
The plasma flow along a closed field line is studied by

solving and initial-boundary value problem In the hydrodynamic
medea, the plamm flows originating from the conjugate
i_ are treated as separate fluids; this treatment is
term_ as a two-stature model [Singh, 1988; _ and
Schunk, 1988; 5ingh, 1990]. In both the models, it is assumed
that at the initial time (t = O) the flux tube is highly depleted.
The depletion is _vea by nr=no(Sin,t/_m_o) _, with the
minimum denmty limited to lO_no , where no is the deity at

the ionospheric base A = _.Ao (Figure 1). Initial flow velocity
v(_,t =O)=O and temperature T±(,t,t=O)= Tw(Z,t=O)=

TO= 0.3 eV. In the hydrodymunic model, the boundary condition
for the fluids originating from the northern hemisphere are

._(x = ,to,t) = no, V.(/t = ,to,t) = V., l;,_,(,t.,t) = r_ (,to,t) = _;
at the boundary ,t =-X. floating boundary conditions are
applied. A set of similar boundary conditions is used for the
fluid onsi_ting from the southern hemisphere, but with the
roles of _ = _o interchang=L In the kinetic model the
boundary conditions on ion distribution function f(,t, V) are
that f(,t =,to. V > O) and f(,t = -,t o, V < O) are half-
Maxwellians, with a tempenmm: To. These boundary conditions

_be onlytheiota e_tering the flux tubes. The ions leaving
the flux robes are detamined by the processes occumng inside
it. A half-Maxwellian, and not a displaced Maxwellian, is

chosen becauseof the followingreasons. Thore is no clear

observationalevidenceof supersonicflowsalongclosedfield
lines at an altitude of 2000 kin. Furthermore, our calculations
show that in about 2 hours the flow m the flux tube becomes

subsonic nearly all along the flux tube; only for an initial stage
of about 2 hours, supersomc flows are see_ In view of such
uacertalnties on the flow velocity at 2000 kin, a half-Maxwellian
serves the purpose of the compzr_ve study.
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3. Numerical results

We compare here the properties of the flow in a flux tube
with L =4 as seen from the semikm"efc and hydrodynamic

models. Since the boundary value of the flow velocity (Vo) and
the heat flow factor r/ in the hydrtxiytmmic model are free

parameters, comlmison is performed by varying them over
physically reasonable ranges. The comparison also deals with
the accumulation of plasma in the flux tube and the equatorial
plamm density.

3.1 Initial Supersonic _ow

We recall that the hydrodytmmic model is based on two-
steam flow in which flows originating form the two

hemispheres are Un_ated as separate fluids, and the temporal
evolution of the two streams is sepemtely studied. Likewise,
even in the mmikinetic model, the sepmme identity of the ions
originating from the two hemisphere, is maintained. Figure 2
shows the evolution of the flow originating from the northern
hemisphere as teen from the smmkinetic model. This figure

give, the ptmse-sptme density plots in _ - _l plane, where Z is
the geomagnetic latitude and v, is the flow velocity along the
magnetic field line. The pomtive and negative values of Z
correspond to the northern and southern hemispheres,
respectively. The dorkem region in the grey-scale plots
represents the highest density as indicated by the scale on the
right-hand side. At time t =QO03 honr, tbe plamm in the tube is
essentially the initial plasma with a denmty profile givea by
n=no[Sin/tlt_nJl, o] _. At later times this plasma expends into
tbe flux tube and it is seea to cross the equator at t =0.25 hour.
Along with the expmmion, new plasma ente_ the flux tube at
the boundary _ = Ao. It i-qseen that by the time t = 0.75 hour,
the flow has [zaetmted all the way to the opposite bonndary at
Jt =-_.o. It is found that the plasma reaching this boundary is
not totally lost, but it is partially reflected back, setting up a
counterstreammg flow as seen fi'om the plots for t > 1 hour. The

reflected flow is seen to reach the boundary at _. = ,_o by the
time t = 2 hours. The plasma flow originating from the southern
hemisphere shows a similar behavior as shown in Figure 2, with
the role of bonnd_es at Z = _L_o inmmhanged. It is worth
pointing out that after reflections, iota merge with the ion
stream moving in the opposite direction, and they do not
sppear as a separate ion beam.

The pos_ble consequm_.A:s of the counte_nmming flow will
be discussed later on. We now compare the above features of the
flow seen from the kinetic model with those seen firm the

hydrodyrmmic model. Figures 3a to 3d show the comparison for
t =0.5 hour, these figures show the distributions of(a) d_sity,
Co) flow velocity, (c) parallel temperature, and (d) perpendicular
temperature. In each panel the curve from the kinetic model is
labeled,and thecurvesfrom thehydrodymmic model forthree

valuesof theheat flow reductionfactorr/=O,r/=O.05,and

r/=0.3 are indicated by the legond. It is seon flom these figures
that for most of the flux robe all four curves are quite close
together, irrespective of the heat flow factor r/. However, near

the opposite boundary _.=-_o, the curves from the

hydrtxiynamic model tend to diverge from the kinetic model,
depending on the value of r/. This difference between the two
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modelsis am-ibutable to the fact when the flow begins to slow
down due to a relative mcrea,_ in the plasma &msity, the

hydrodynamic model predicts an increase in the parallel
temperature as clearly is seen for Z < -36 ° in Figure 3c. The
increase in Tu ¢nlumces the pressure and further slows the flow
and _ the density. In the semikine6c model, the
tempermm-e cnhanr,mnent does not occur. Instesd, a
countersUmming develops. This contrast between the two
models becomes much clesrm" at later times, for example, at

t=l hourforwhich the comperisonisshown m Figures4a to

4d.

Figure 2 shows that at t = I hour the reflected ions set up
co__ throu_o_ the southern hemisphere (_<0).
Since the hydrodymmn¢ model cannot handle the
_ _e reflection process crmu_ a shock, which

is clearly sean in the density, velocity, and tempemtme plots in
Figures 4a to 4c, respectively', across the shock indicated by the
arrows, dessity suddenly increases, flow velocity decreases and

the parallel tmnpemmre also inc:ease_ We note that the
hydrodymunic curves for diffe_mt values of )7 begin to show
some difference among themselves, with the curve for r/= 0.3
being closest to that from the kinetic model. It is worth pointing
outthattheflow velocity in the kinetic model is tlm average
over the coun_ ions. The average velocity is lower
than that fixan the hydrodymml/c model over the region of the
cotmuumemning, but where the coun_ has not yet

(_. • 30") the flow velocities from the two models are

generally in good agreement.
The _ fir_ im)paSaU_ upwmd to the equat_ and than

downw_i and resches the ionospheric bounam7 at _t = ,t o at
t--=.2 hours. The p_on of the shock in the density profile

is shown by the arrows m Figure 5. The transit time of about 2
hours for the shock is in agreement with the development of the
coun_ stming in the sombem hemisphere and

to the nc_hern iotmsOmic boundary by t = 2 hom_.
(see Figure 2). We find that the heat flow plays only a minor
role in the motion of the shock; the shock speed is slightly
entranced with increasod heat flow r/; for )7 =0.3 and 0.05 the

shock is already abext_ near the boundary A ---,to, while for

r/= 0, the shock can be stiU seen m the flux tube at t = 2 hours.
After the shock reaches the boundms, at A=A o, the flow in

the flux tube becomes gone_rally subsonic with respect to the
ionscous_c speed, which is about 10 km/ s -I with electron and

ion tempcxmmm To = 0.3eV at g = __,Zo. We will discuss
subsonic stage aft- we examine the reason why a _ did not
form during the early stage (-l hour) of the coun_
(Figure 2) in the semikinefc model.

3.2. Electrostatic Shock

We have just _ that a shock automatically forms in the
hydrodymmi'c model as soon as the flow begins to reflect near
theoppositeboundary. On the otherhand, the kinetic model
does not show theshockformation.Instead,a countersmmming

flowdevelops.We examine this issue intermsoftheconditions

for shock formation and ion velocity distribution function_

According to the original suggestion of Banka et al., [1971], a
shock should form when supersonic flow from the conjugate

hemi_hercs collideat the equator. The flows collide as early as
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t = 0.25 hour, the flows from the _ hemisphere can be
seen from Figure 2, and the correslxmd_ flow from the
southern hemispha¢ is the mirror image of this
flow with respect to the equator. When the flow begins to
overlap, the shock should form through the ion-ion instability.
The conditions for such an instability in a colliding situation arc
given

1.3v. <Vb < MC:, T, > 3 T_ (8)

where v. is the ion thermal velocity, vb is the ion beam
velocity, Ca is the i_c speed and M is the math
number, which could be as huge as 4 [Forslund and Shoak,
197@, Montgomery and Joyce, 1969]. However, it must be
numtioned here that high critical Mach number M=-4 is
determined by the mmlismar evolution of the electron dynamics,
including Uapping and heating of electnms [e.g., Singh, 1988].
For isothermal eleclxon& as it is assmned in the semikinctic
model, M= 1.6 [Tidm_andKrail, 1971]. It is worth pointing
out that for large beam velecitie-4, oblique ion waves pmpegating
at an anslc from the magnetic field are likely to be excited.
However, the role of stw,h highly oblique wav¢_, which are likely

to occur for highly supersonic beams, in mome_tmn exchange
between in_ beams and shock formatim is not well

We examine here the likelihood of the instability occurring
from the flow petameten given by the semikinetic model. First,
we do this _ for t = 30 mln when the flow has ormsed

the equator. Figure 6 show_ the avmtge flow velocity K, the
temperaa_ ratio rn/r. , and the im-ax, ustic speed c, ua
function of 8eamagneti¢ latitude for the flow at t = 30 rain.,
shown in Figure 2. Note that the temperature ratio is plotted
aRer multiplying it by 10, so that all the line plots in Figure 6
can u'Uli;_ the same vertical scale. C, is calculated from
C, = [t(T, + 3_) / m]s/2. The critical temperature ra_
_ / T, = 0.33 for the instability is shown by the segment of the
thick hodzontal line in Figure 6. It is seea that the ions have
sufficicmtly cooled down to meet the instability condition on the

ion _ over an extend_ eq_ r_ion (IX[< 20").
The flow coming from the opposite hemisphere show_ a
feature. The ionacon_¢ speed in the _lUatorlal region is about

8 lm/ 8-I . It is seen that over the latitudinal region ([A[< 20"),
the ion beam velocity is about _ _=2C,. In the acmikincfic and
hydrodynamic models discussed here the electrons are assumed
to obey the Bolmnann law. Therefore ion beams with such

velocities arc too fast to excitetheion-ion instability and thereby
to form shocks in the model. Furtlmanove, it is impoC,ant to
point out that the processes which lead to shock formation,
inchuiing the ion-ion instability, are mi_, which are
suppressed in the large-scale models [Singh and Chart, 1993]. If
electrons dynamics were rigorously includedinthemodel and
the associated mi_ woperly re_olved, it is likely that
the ion-ion interaction w_id have occurred forming shocks.

Figure 7 shows the driR velocity Vb,C,, and TMIT. at t= 1
hour for the flow originating from the northern hemisphere. It is
seen that as the ion beam penetrates into the opposite

hemisphere (3.<0), it gets progressively warmer and the

temperature condition T,/T,<0.3 is not met beyond

[,_= I0°. Thus ion instabilityand shock formationare not
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This indicatesthat the shock formationin the

hydrodymmnc model (Figures4 and 5) isan arufactof the
mode.L

Inview oftheabovediscussionincouncctionwithFigures6

and 7, itemergesthaton the basisof tempomtme condition

alone,itcan bearguedthatffshocksform,theyshouldbe during

the early stage whon the ion beams begin to mteqxmetrate m the
equatorial region. During later stages, when the beams penetrate
intotheoppositehemispheres,theshockformationisnotlikely
unlesssomehow eloctromareheated,enhancingthetemperature

ratio7n/7,.Howev_, asmentionedearliertheshockformation

intheequatorialregionrequiresarigorous_eatmontofelectron

dynamics. In view of the simplified treatment of electrons in the
models described here, and relatively coarse spatial and

temporal resolutions afforded by them the issue of equatorial
fortaafion cannot be _mled in this paper.

3.3. Subloaic Flow

Af_ the initial stage of supersonic flows from the conjugate
ionospheres,the flows become generallysubsonic.This is

predicted fi'om both the models. Figure 8 shows the status of
the flow at t = 4 hours, from both the hydrodynamic and
semikinetic models. As before, there are three curves from the

hy&xxiynamic model which are compared against the curve from
the smnikine_c model. Figure Sb shows that the flow velocities
obtained for different values of r/fi'om the hydrodynamic model

agree with the flow velocity given by the kinetic model. The
maximum flow velocity of about 5 tm/ s -_ seen near the

boundary 1 = 10 is subsonic with respect to the ion-acoustic
speed C, = 10/an / s -_. We note that the average flow velocity
peaks slightly above the boundary in both hydrodynamic and
kinetic models.The peaking is a consequence oftheboundary

conditionsat1 = 1, and theaccelerationofionsby thepressure
and electric field distributions in close vicinity of the northern

boundary of the flux tube.
Figures 8a, 8c, and gd show that for the subsonic flow the

density and temperature _ critically depend on the heat
flow factor r/. For r_ = 0.3, the hydrodyasmic model yields
results in good agreement with those from the kinetic model.

When r/ becomes too small (r/=0.05), the structures m the
density and temperature profiles markedly differ from the
kinetic model; the density structure shows an extended density
cavityin the equatorial region, where paralleltemperatureis

relativelyhigh[Singh,1991].Furthermore,forlow valuesofr/

thereisdensityenhancementand correspondinglya low parallel

temperatureinthesouthernhemisphere.When heatflowfactor

issufficientlylarge(r/>0.15),such structuresin n(1) and

T,(1) are washed away. In a recent paper, Ho et al. [1993]
made a similarobservationregardingevolutionof density

perturbations in the polar wind by comptmng semikinetic and

hydrodynamic models for an open flux tube.
The comparison between the hydrodynamic and kinetic

results at t = 12 hours is shown in Figures 9a to 9d. The density

and temperature _ at this stage are qualitatively similar
to that at t = 4 hours as shown in Figures ga to 8d. However it

is seen that at t = 12 hours, the density, and temperature profiles
even for r/=0.05 have begun to compare well with that for

r/= 0.3, for which the density distribution agrees well with that
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givenbythesemikine_¢treatment.The discrepancybetweenthe

densitiespredicted by the kinetictreatment and the

hydrodynamicone f_ r/=0.3isboundedby 15%, formostpert

of the flux tube, except near the soutim_ boundary x = -_t o.
The runs for the ccmlmrisou between the hydrodytmmic and

kinetic models wine carried on until t = 48 hours. For time

t > 12 hours, it was found that the hydnxiymmic model

systematically yields densities higher than that given by the
semikimtic model. Figure 10 shows the comlmrisou betwegm

theequatorialdensitiesasobtainedfromthetwomodels. This

figureshows thetemporalevolutionoftheequatorialdensities

found from the kinetic(solidline)and the hydrodynamic

(dashedlinecurves)models.For thelattermodel,thedensities

are plotted for different values of the flow velocity yo at the
boumiaries,t= :_Lo. We remind ourselves that the results from
thehydrmiyxmmicmodel shown inFigures3,4,5,and 8 arefor

a flow velocityVo =(kTo/2_)t12=O.39V_. We noticefrom

FigureI0thatforthisboundaryvalueoftheflowvelocity,the

kineticand hydrodymuniccurvesareremarkablyclosefort= 12
hours.Thisimpliesthatthisboundaryvalueoftheflowvelocity

closelyconespoeds to the inputfluxdeterminedby a half-
Maxwellian disU-ibution function, which is imposed as a

boundary condition m the kinetic model. For t > 12 hours, the

boundaryvalueofVo : 0.39V,yieldsan overrefillingcompared
tothekinetic model.This simplyimpliesthatthenetinfluxof

iou into the flux tube at the ionospheric boundaries s'teMily
decreases m tim kinetic model, primarily due to the icm flowing
o_t of the flux robe. On the other hand, in the hydrodynamic

model the influx is primarily determined by the imposed flow
velocity, and it remains constant. This is demonstrated by
competing the temporal evolutionof the total plamm coutmt in
the flux tube as see_ from the two models.

Figure 11 shows the total content as a function of time. As in
Figure 10, for the hydredynamic model the curves are for
diffe:ent values of the imposed velocity at the boundary. It is
seen that for vo = 0.39V t, the hydrodynamic model yields nearly
the same total plasma content as the kinetic model with nearly
tlmsanmrat_ofimmm_mit for t= 12hours.At latertmms,
the conUmt fi'um the kinetic model shows a tendency toward
saturation because the rate of increa_ in the content

continuously decreases. Even in tim hydrodynamic model there
isa tendency toward the decreasing rate,but the decrease is
much slower.Thisdiffcresceintheinfluxoftheionsfrom the

two models has a simple explanation. In the kinetic model, some
of the ions have the liberty to exit tim flux robe as they are

scattered by Coulomb collisions, or as they simply flow ouL On
the otherhand,in the hydrodynamic model the plasma entering
the flux tube can leave the system only through the opposim

boundary, where the flow velocity becomes exceedingly small
aRerthe shockphase ( t> 2 hours).This impliesthatinthe

hydrodynamicmodel thereisno provisionforthe plasmato

leavethesystenLThe slighttendencytowardthesaturationin

thehydrodynamicmodel isdue tothechangingpLas=nacondition
nearthe boundarywhere the flow originates.As the plasma

density near this boundary increases, the influx mm the flux
tends to decrease.

Figures lO and 11 also show the equatorial density and the

total plasma contc_nt from tim hydrodynmmic model for vo = O.IVr
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and Vo = 0. It is se_ that even or Vo = O, the equatorial deity
and the total cont_t are increasing with time and, in about 48

hours, they tend to sppr_ the correspond_ results from the
kinetic model. It may _mnd strange how refilling can occur with
a boundaryconditionofvo= 01The refillingofa fluxtubewith

zero flow velocity as boundary conditio_ in a hydrodynamic
model was pcevioualy described by Singh et aL, [1986].

The ion flux developing near the boundaries from the kinetic
model and the hydrodynmmc model for Vo =0.39V, during the
early times (t < 12 hours) is 18 x l0 s ions on-2s -I . In the kinetic
model, this flux continuously decreases because some of the iota

entering the flux tube eventually leave. However, in the
hydrodymmfic model the plasma ontm'ing the flux tube rmmins
in it, causing the ov_refilling for t > 12 hom_ when

vo= 0.39V,Wlmn o = 0, the hydrodynmnic model yields a flux
of <108 ictm era-is -i, and it continuously decreases as the
forc_ (de, mined by density and temperature _dimts) on the
ions _.elerating them into the flux tube from the boundary cells
diminishm with the refilling. It is worth mentioning that the

compmson carriedout above is based on the simplified

boundary conditions in the kinetic and fluid treaun_ and a
heuristic _ of the heat flow. A com_ of the plasma
treaUmmts without these simplifications will be worthwhile.

A compm-i._m of plasma _butions in the flux tube at a
relatively late time ( t = 48 hom_), as obtained from the two
models, is shown in Figures 12a to 12d. For the hydrodynamic
model, r/=0.3, and the di_butinm are given for three values
ofthe boundm7 velocity:, vo =0.39V t 0.IV t, and 0. Demity
profilesinFigure12a show the overrefillingfox Vo:0.39Vt,

lintwhan Vo isreducedbelow 0.1V,,,thedemityprofilesfrom
the two models disagree near the boundary 3. = ).o, but away
fi_m it the _Fecment considerably improves. The disagreement
near the bonmim7 is also reflected in the velocity profilm in

Figure 12b. Dmpite the above disagreement in the density and
velocity IXofiles nesx the bmmdmT, the _
obtained from the two models are nem'ly identical. Temperature

is nearly isom_ic (T_*T_); it rises to about 0.4 eV in the
equatorial region from the boundary value of 0.3 eV. In the late
stage of the refilling,the s'tmilarity between the tempemtme
profiles, despitethe differencesin the density and velocity

profilesf_om thetwo models,can be understoodby examining

thetempcran_,equatiom(3)and (4)and theflowproperties.

Since the flow velocity is mall, the velocity profile has little
effect on the temperature Ixofiles. The maximum flow velocity
in a localizedr_ion neartheboundaryis2.5/o-# -i, ccmlmred
to the thermal velocity of 5.5 kmr I and ion-accm_c speed of

10 /oPts-l. The density dislribution affects the temperature
disaibution through the heat flow terms in equations ( 3) and (4).
In the late stage of the flow when the gradients have smoothed
out and the densities axe relatively large, the density distribution

also has insignificant effects on the heat flow.

4. Conclusion and discussion

We have carried out a comparison between semikinetic and

hydrodynamic models for plasma flow along closed magnetic
field lines. The comparison has direct relevance to the problem
of plasmaspt_c refilling. It is found that the compamon does
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notdependonlyontheplasmaphysics affmded by the models,
but it also _y depends on the boundary condition on the
flow velocity. In a kinetic model, an _te boundary
condition is to prescribe the velocity distributions of the

inflowing ions to be half-Maxwellian for v > 0 at _ = ,to and
for v<o at _.=-_o. In the hydrodynamic model this
boundary condition corresponds to the driR velocity
Vo=(kTol2xm) 1/2. A comparison of results from the two

models with =r.h boundary conditions revealed the following
important features of the flows.

1. When supersonic flows develop in response to a su&iea
depletion in a flux tube, the hydrodynamic and kinetic models
yield distribution of density, flow velocity, and temperatures in

generally good agrcemmt The tm_amar¢ distributio_ in the
region of _ flows are found to be rmmukably similar,
showing mall effect of the heat flow. It is worth pointing out
that Demara and Shank [1991] competed the behavior of a
highly supermaic plasma flow from a hydrodynamic model
based on a more complete (16-momeat) set of equations with
that from a semikinefic mode.Ldmnonstmting a gond agreement.
We have demonstrated here that, for a highly sup_somc flow,
even a much simpler set of hydrodynamic equations are

adequate. It is physically exphined by the fact that the amspm
of heat in a supersonic flow is dominated by the large
velocity and not by the heat flow proces& Mathematically

it implies that the heat flow terms are negligibly small

_ totheconve_ivetram inthe temperature equationL
2. Both models show reflection of the sapm_omc flow wben

it penetrates deep into the opposite hemisphere. Since evan a
two-stream hydrodynamic model cannot handle the

coentenamming for a gives flow, the reflection automaticaUy
leads to a shock fonnatinn [_ and Schunk, 1988; Singh,
1991 ]. The shock first moves upward toward the equator and
thendownward totheionospheric boundary.An examinationof

theplasmaconditionsforshockformationshows thatthe

seeninthehydrodynamicmodel isanartifactofthemodel;the
ion beams are found to be too warm to excitethe ion-ion

instability which can subsequently produce a shock.. The
semikine_c model shows the developnmat of countmalzeaming
for the flo_, the ¢oun_ advances to the equa_ and
downward to iooosphencboundary. It tm'ns out tl_ the mmsit
time of the shock all the way to the ionospheric boundary and
the tinge for the countermeaming to slxead to this bonndmy are
nearly the same, about 2 hours. In a previous peta_ , Sing/:
[1991] retxx_ the shock transit time to be almut 4 hours, which
is in error due to a nmnalizafion factor of 2. In view of the sho_

transit time of the shock, the sinr, k formation does not
significantly effect the refilling, as evidenced by the comparison
of the flows fi,om the hydrodynamic and kinetic models for later
times.

Lack of shock formation in the eqlmuxml region,when the

ion beams begin to interpenetrate [Banks et al., 1971] is
uncertain in view of the spatial and temporal resolutions
affordedby a large-scale model and the simplicity in handling
the eleclron dynamics by the Bolt_nann Law.

3. After about 2 hours, the flow m each hemisphere becomes
subsonicwith respectto the ion-acousticspeed.This is seen
frombothmodels.
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4. A comparisonof the totalplasma contentsand the

equatorialdc_ities from the two models indicatesa good

agreement up to about t-=f2 hours,aRer which the

hydrodynamic model indicates overrefilling of the flux tube. The

overrcfilli_istracedtotheinabilityofourhydrodymumcmodel
tocontrolthenetplasma inflowby thereturmngparticles.The

inflowisdeterminedby the imposedboundm7 conditionsand

theoutflowofplasma isexceedinglymmll. On theotherhand,

in the kinetic model the influx gradually decreases due to ions

returning from the flux tube, showing a tendency toward
saturation in the refilling in about 2 days. It is worth pointing
out that it will be useful to perform a study comparing the
models based on the kinetic and hydrodymimic treatments by

relaxing some of the simplifications in terms of boundary
c_nditio_ and in _ the heat flow in the latter treatm_t.
The boundary conditicm can be relaxed by including the
ionosphmc plasma gem=_on _ at low altitu_ [Guiter

and Gombo_, 1990].
When the boundary flow velocity in the hydrodynamic model

reduces below Vo=(kTol2Xm) 1/2, there is an initial
undm'filling, but eventually, the refilling from this model catches
up to that given by the semikinetic model. For example, when
Vo = O, the degree of refilling fxom the two models, in terms of
both the equatorial density and the total plasma content in the
flux tube, becomes aplxoximately the same in about 2 days.

In some previous studies [ $ingh et al., 1986; _m and
5chank, 1988; Sing,h, 1991], a boundary condition of zero flow
velocity wag used. R may appear strange that a refilliag occurs
with this boundary condition on the flow velocity. The issue is

briefly revisited here.
From the compm-ison of the plasma contents and the

densities give_ by the models, it is concluded that
after about 12 hours, the choice of boundary condition m the

hydrmiynamic model is quire uncertain.In view of this

_ty, the choice of zgzo-velocity boundary could be useful
during the late stage of the refilling, it yields underrefilling only
neartheboundaries,wherethedensityand average flow velocity
show a discontinuity in the flow. otherwise, over the rest of the
flux tube the density and flow velocity are in quite good

agreement with those given by the kinetic model.
The hydrodynamic model described here is a two-scemn

model and includes equation for the parallel and perpendicular

temperatures. Single-stream hydrodynamic models [5ingh et al.,
1986, C-uit_r and Gombos#, 1990] suffer from the shortcoming
that they generate shocks at the equator wbeth_ the plamm
conditions allow them or not. The single- and two-_
models with assumed temperature isocopy suffer from the

shoe, coming that the shock transit time is fairly long, and a

major part of the refilling occurs through supersonic flows from
the ionospheres { Singh et ai., 1986; Ra.mm,uen and Schunk,

1988; Singh, 1991]. This i: in contrasttothetwo-staturemodel
with a serf-consistent tream_ent of the temperature amsotropy,

this model yields evolution from supersonic to subsonic flows at
the same timescale as the kinetic model. In this sense the
heuristic txeamxmt of the heat flow described in this paper

appears to be adequate. This treatment also appears to be
adequate even in the subsonic stage as long as the flow velocity
near the boundary is relatively large near the thermal speed, for
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example, for t < 12 hours in our present calculations. However,

when the flow velocity becomes sufficiently low so that a large

fraction of injected ions in the kinetic model begin to return

f_m the immediate vicinity of the boundary, the boundary

conditions fo¢ the hydrodynamic model diverges from that of the
kinetic treatmem because this model does not allow for a revarn

flux for a 8iv_ _ Can this situ_ be improved by a
more rigc_0us _t of the heat flow and/or by properly

including the ionospheric pla_na supply [Cmitor and Gombo_',

1990]? In order to answer this question, it will be useful to

compare models based on (1) the heuristic heat flow

treatment, (2) a more _aistieated treatmeat of the heat flow

using 16-mome_ set of transport equations, and (3) the

_c treatment, and all models properly including the

analogous ionospheric boundmy conditims. If the model (i)

well with the latter ones, the computational effort in

using translxxt equatiom for modeling space plamm will be
considerably reduced.
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Figure 1. C_omecy of a closed magnetic flux tube. The
latitudinal angle A and the geocentric distance r are shown. The
ionospheric boundaries are at s = O(,t = &o), and

s = _(_. = Xo).

Figure 2. Temporal evolution of the flow originating from the
northern hemisphere, phase-space (s-Vlu) plots are shown. The
plot at t = .003 hour nearly shows the initial plasma in the
flux tube.

Figure 3. Comparison of flows from semikinetic and
hydrodynamic models at t = 30 minutes. For the latter model
flows are givea for r/= 0, 0.05 and 0.3: (a) density, (b) flow
velocity., (c) parallel temperature, and (d) perpendicular
temperature distributions. For most latitudes the curves are so
close together that it is difficult to distinguish them.
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Flgare 4. Sam© as Figure3, but at t = i hour. The

hydrodynamiccurvesare distinguishedby the presenceof a
shock which is manifested by. sudden jumps in density., flow

velocityand paralleltempe_turenear 2 =-25. Shocks are

indicatedbythemmws.

Flgure5. Propagationoftheshockisshown throughthejump

inthedensityprofilesat(a)t= Ihour,(b) t = 1.5hours,and

(c) t = 2hom_. For thep_ ofcomlmrisonthecurvefrom

tlmkineticmmlel and threecurvesforr/=0,0.05,and 0.3from

the hydrodynnmiemodel are shown.Shocks are indicatedby

IlI/DW_.

Figure 6. Distribution of flow parameters from the kinetic
model. The average flow velocity _ , ion-acoustic speed C, and
the tempetstme ratio _/_ for ions with V_>O arc shown for
the purpose of instability analysis at t = 30 minutes. The
cotmgxmding curves for vt,<0 can be deduced from the

symmetryconsideaations.

Figure 7. Same as Figure 6, but at t= 1hoar.

Figure 8. Same asFigure4, butat t=4 hours.

Figure9. Samc as Figure 4, butat t = 12hours.

Figure 10. Tempcm_ evaluation of the equatorial density from
the kinetic model and from the hydrodytmmic model for three

valuesof v,, 0.39_,0.1Vt,and0V ,.

Figure 11. Temlx_ evolution of the total plasma content in
the flux tube for the kinetic and hydrodynamic models.

l_nam 12. Dism'bution of (a)density,(b) flow velocity, (c)

parallel temperatures and (d) perpendicular temtmmtme at t =
48 hours. All v_.ical _les are linear in this Figure. Thea-c are
three curves fi'om the hydrodynamic model for Vo= 0, 0.1 Vt ,

and 0.39 _.

Figure I. GeomeCy ofa closedmagneticfluxtube.The latitudinalangle/tand thegeocentricdistancer are

shown. The ionospheric boundaries are at s = 0(,_ = 2o), and s = Sm_(,_ = 20).

Figure 2. Temporal evolutionoftheflow originating from the northernhemisphere;phase-space(s- V,)plots

areshown.The plotat t= .003hournearlyshowstheinitialplasmam thefluxtube.

Figure 3. Comlmrison of flows from semikinetic and hydrodymmaic models at t = 30 minutes. For the latter
model flows are given for r/= 0, 0.05 and 0.3: (a) density, Co) flow velocity, (c) parallel temperature, and (d)

perpendicular temperature distributions. For most latitudes the curves are so close together that it is difficult to
distinguish them

Figure 4. Same as Figure 3, but at t = ! hour. The hydrodynamic curves are distinguished by the presence of
a shock which is manifested by sudden jumps in density., flow velocity and parallel temperature near 2 ----25.
Shocks are indicated by the arrows.
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Figure 5. Propagation of the shock is shown through the jump in the density profiles at (a) t : 1 hour, (b)
t = 1.5 hours, and (c) t = 2 hours. For the purpose of comparison the curve fxom the kinetic model and three
curves for J7= O,0.05, and 0.3 from the hydrodynamic model arc shown. Shocks are indicated by arrows.

Figure 6. Distribution of flow parameters from the kinetic model. The average flow velocity Vb , ion-acoustic
speed C, and the tcmpcnmu'c ratio 7tl/ 7, for ions with _'n> 0 arc shown for the purpose of instability ana/ysis
at t -- 30 minutes. The coacspond/ng curves for vn< 0 can be dcduc_ from the symmetry considerations.

Figure 7. Same as Figure 6, but at t = I hour.

FigureS. Same m Figure 4, butat t=4hom_.

Figure9. Same as Figure 4, butat t= 12hour_.

FlgureI0. Temlxnl evaluationoftheequatmialdensityfrom thekineticmodel antifzom thehydrodynamic

nuxielforthreevaluesof Vo,0.39V,,0.1V,,and0_.

Figure 11. Temporal evolution of the total plasma content in the flux tube for the kinetic and hydrodynmmc
models.

Figure 12. IMstributionof (a)density,(b)flowvelocity,(c)paralleltemperaturesand (d)perpendicular

temperatureat t= 48 hours.All verticalscalesarelinearin thisFigure.There arethreecurvesfrom the

hydrodynamicmodel for _'o=0,0.1V,,and 0.39V,.
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Abstract:
Large-scale models of plasmasphedc refilling have revealed that during the early stage of the refilling

counterstreaming ion beams are a common feature. However, the instability of such ion beams and its effect on
refilling remain unexplored. The difficulty with investigating the effect of ion-beam driven instability on refilling
is that the instability and the associated processes are so small-scale that they cannot be resolved in large-scale

models; typically the instabilities have scale lengths of a few tens of plasma Debye length, which is a few meters at
the most, and the spatial resolution in large-scale models is at least several tens of kilometers. Correspondingly,
the temporal scale of the instability is by several orders of magnitude smaller than the temporal resolution afforded

by the models. In order to learn the basic effects of ion beam instabilities on refilling, we have performed
numerical simulations of the refilling of an artificial magnetic flux tube. The shape and size of the tube are
assumed so that the essential features of the refilling problem are kept in the simulation and at the same time the

small-scale processes driven by the ion beams are sufficiently resolved. Two types of simulations have been

performed; in one type we treat ion kinetically and electrons are assumed to obey the Boltzmarm law. In the other
type both electrons and ions are treated kineticaUy. A comparison between the results from such simulations reveal
that in the latter type of simulations electron-ion (e-i) and ion-ion (i-i) instabilities occur and significantly modify
the evolution of the plasma density distributions in the flux tube along with the total plasma content. When the

electron dynamics is simplified by the assumption of the Boltzmann law, both the electron-ion and ion-ion
instabilities are inhibited, and only in very late stage of the filling there is a weak scattering of ions due to an
enhanced plasma fluctuation level. On the other hand, when electrons are treated kinetically, the e-i instability
occurs at an early stage when ion beams are too fast to excite the i-i instability. The former instability heats the
electrons so that conditions for the latter instability are eventually met. The i-i instability and its non-linear
evolution creates potential structures including several electrostatic shock pairs which significantly modify the

filling process. The electrostatic potential structures are highly dynamic, and at times they appear as moving
double layers greatly affecting the state of the plasma inside the central region of the flux tube.

1. Introduction
An outstanding problem in space plasma transport is the coupling of microscale and mesoscale processes.

An interesting example of this problem is the early stage refilling of the outer plasmasphedc flux tubes aRer

geomagnetic storms. The plasma evacuation from the flux tubes for L > 3 during the disturbed times creates
pressure gradients between the ionosphere and the equatorial region, driving highly supersonic ion beams in the
interhemispheric plasma flow. The counterstreaming ion beams should be able to drive instabilities and affect the

plasma flow, and hence the refilling process.
The renewed theoretical effort on plasmaspheric refilling during the last ten years or so have been

primarily on large-scale modeling using hydrodynamic [Kazanov et al., 1984; Singh et al., 1986; Rasmussen and
Schunk, 1982; Singh, 1988, 1990, 1991a; Singh and Chan, 1992] and semikinetic [Wilson et al., 1992; Lin et al,
1992] treatments. The temporal and spatial resolutions afforded by the model are generally too crude to include
the microscopic effects. Driven by the idea that interpenetrating ion beams may generate shocks during refilling
[Banks et al, 1971], the physics of shock formation has been studied using small-scale simulations [Singh and
Schunk, 1983; Singh et al., 1986; Singh, 1988; Singh and Chan, 1992]. More recently some anomalous effects in
terms of transverse ion heating and scattering of ions have been included in the theoretical studies of the refilling

problem, but these effects are not directly driven by the ion beams, instead it is hypothesized that the heating and
scattering is caused by waves generated by a hot plasma trapped in the equatorial region [Singh et al., 1982; Singh
and Hwang, 1987; Singh and Tort, 1989; Singh, 1991b; Singh and Chan, 1992; Lin et al., 1992].

The main purpose of this paper is to study the effect of ion-beam driven waves on the filling of a magnetic
flux tube with plasmas flowing into it from its ends, as schematically shown in Figure la. Since we wish to resolve

the microprocesses associated with the instability caused by the ion beams, we cannot model an entire

plasmaspheric flux tube. Therefore, we perform the study by means of numerical simulations of plasma flow in an
artificial fltLXtube, which has the essential feature of magnetic mirrors. Owing to the limited size of the flux tube
included in the simulation, results presented here illustrate the basic properties of the ion-beam driven instabilities,
their effects on the plasma flow and the accumulation of the plasma in the tube. These results cannot be

quantitatively applied to a plasmaspheric flux tube, but the basic ideas found here are applicable and the question is
raised as to how to include them in the large-scale refilling models. However, no attempt has been made to answer

this question in this paper.



The basic ideas found in this paper are as follows. When the simulation is performed by treating ions
kinetically and electrons by simply assuming that they obey the Boltzmann law, the ion-beam driven instabilities
are not found because the beams are too fast to excite the waves. On the other hand, when electrons are also
treated kinetieally the fast ion beams during the early stage of the evolution of the plasma in the flux tube drive

electron-ion instability [Fujita et al., 1977; Singh, 1978]. This instability contributes to the heating of electrons in
conjunction with the electron energization in the self-consistent potential distributions resulting from
counterstreaming plasma expansion. This heating increases the ion-acoustic speed in the plasma and thereby the
initially fast ion beams eventually become slow enough relative to the ion-acoustic speed to drive the ion-ion
instability, which is found to be very effective in coupling counterstreaming ion beams and in trapping of plasma in
the flux tube, especially in its outer regions away from the central minimum magnetic field (Figure lb).
Comparing the results from the simulations with and without the kinetic treatment of the electrons, we found that
in the former simulation the filling of the flux tube is enhanced due to the trapping of plasma in the potential
structures set up by the ion-ion instability. The instability also drives electrostatic shocks and distributes the

plasma in the flux tube quite differently from that in the simulation with the simplified electron dynamics.
Furthermore, this instability controls the influx of ions into the central region of the flux tube, and thereby the
dynamics of the potential structures including the electrostatic shocks in the central region.

The rest of the paper is planned as follows: In Section 2 we describe the numerical technique. In Section
3 numerical results are described along with their interpretation. The conclusion of the paper is given in Section 4.

2. Numerical Model

We perform a one-dimensional particle-in-cell simulation of plasma flow along an artificial flux tube

(Figure la). The magnetic field B(X) = Bo(1 - ct exp[-(X'-d/2_ / 0-2]) where B o is a constant field

outside the minimum-field region (Figure lb), d is the size of the simulation system and the choice of ot and _r
determines the desired field distribution. The cold plasma flows into the flux tube from the two plasma reservoirs
at the ends of the simulation system at X = 0 and X = d (Figure la). The simulation technique is described in

Singh and Chart [1992]. Plasma dynamics is simulated using a particle-in-cell (PIC) code. We have performed
two types of simulations; in one type, called here Run-I, ions are treated kinetically using the PIC code while
electrons are assumed to obey the Boltzmann law. This assumption along with the assumed condition of a

quasineutral plasma gives the electric field E = -(kTo/en,.)dn_./dx where ni is the ion density, k is the

Boltzmann constant, and TO is the electron and ion temperatures in the plasma reservoirs. In the other type of

simulation, called Run-2 here, both electrons and ions are treated kinetically using the PIC code and we solve the

Poisson equation for the electric field with the boundary conditions _p(x = 0) = _9(x = d) = 0, where tp(x)

denotes the potential distribution. As the particles move in the flux tube, their magnetic moments are assumed to
be conserved.

The velocity distribution function of the ions and electrons in the plasma reservoir is assumed to be
Maxwellian with a temperature To. The reservoirs supply a continuous flux of charged particles into the flux tube

through the process of plasma expansion. In the simulations reported here, we have used _. / m e = 400, which

adequately separates the electron and ion time scales and, at the same time, allows computationally feasible runs.

Numerical parameters of the simulations are as follows: system size d= 5 x 1032d, the magnetic field

parameters a=0.9, and ff=7502 d forwhich B(x) is plotted in Figure lb, cellsize Ax=20ga, and

time step At O. -1= 10)peo, where )I'd and O)pe o are the Debye length and electron-plasma frequency in the

cold plasma reservoirs, respectively. In the following discussion we have used normalized quantities defined as

follows: time [ = t COpio, distance _i_ = X / Aa ' velocity i7" = V /Vtte and electric potential -_= ec_/ kTo,

where Vte = (kTo/me) 1/2 , copio = (m e/_.)l/2cOpeo , and COpeo is the electron plasma frequency in the

plasma reservoirs and the Debye length 2 d =Vte / COpeo .



3. Flux Tube Filling and Ion-Beam Driven Instabilities
In this section we examine the evolution of the plasma and the potential distributions in the flux tube as

seen from Run- 1 and Run-2. A comparison of results from these runs reveal when and why plasma instabilities are

excited and how they affect the plasma and field distributions.

Figure 2 shows the evolution of the ion phase space in X - V/II plane from Run-1. Note that the velocity

on the vertical axis is measured in units of the ion thermal velocity l/t/= (kT o / try.) 1/2. Figure 2a for t = 200

shows the expanding ion beams from the two plasma sources shown in Figure la. By the time t" = 103 (Figure

2b) the counterstreaming of ion beams is set up all along the flux tube; the counterstreaming continues without a

significant interaction between the beams as seen from Figures 2c and 2d for [ = 2000 and 4000,

respectively. The main feature of the spatial evolution of the ion beams is that they progressively slow down as

they approach the opposite end of the flux tube. From the plot at t = 4000, we also note that a few particles in
the ion beams approaching the opposite ends slow down upto almost zero velocity; the number of such ions

increases with time as seen from the plots at 7 = 8000. This tends to slowly fill in the velocity space between the

two counterstreaming ion beams in the off-central region. We find that such scattering of ions is not caused by

anbipolar electric fields, which are given by the ion density gradients.
The evolution of the ion density profile in the flux tube is shown in Figure 3. After the initial stage

(/ < 1000), the density profiles are generally smooth having relatively large gradients in the control region

(1500 < IX[ < 2500), and in the off-central region (100 < X < 1500 and 3500 < X < 4900) the gradients

ate weak giving weak electric fields. The scattered particles in Figures 2d and 2e occur in the latter regions. In

view of the weak anbipolar electric fields, incapable of slowing down or reflecting the beams, we suggest that the

scattering occurs via some anomalous effects involving fluctuations in the plasma. Later we discuss this issue
further after we have considered the flow in Run-2.

The evolution of ion phase space in X - V/i I plane for Run-2 is shown in Figures 4a to 4£ Note that in

this figure the velocity is normalized with respect to Vte, in contrast to Vt/ inFignre2forRun-1. Acomparison

of the phase-space plots in Figure 2b and Figure 4b, which are for the same time [ = 103, shows a significant

difference in the topology of the distribution of the average flow velocity of ions in the two runs; in Run-1 with the
Boltzmann electrons, the ions have relatively large velocities near X = Xmi d creating a "bulge" in the plots.

The bulge is not seen in Run-2. The bulge in Figure 2 is simply a manifestation of the magnetic field distribution

B(X) (Figure lb), which controls the density distribution and hence the potential distribution according to the

Boltzmann law. The relatively sharp density gradients in the density distribution on either side of the midpoint

yield relatively large electric fields, which accelerate ions coming into the central region and then decelerates them
while leaving. On the other hand, in Run-2 the Poisson equation including a self-consistent treatment of the space

charges does not yield a potential distribution controlled by B(X). The potential distributions for Run-2 are

shown in Figures 4g to 4 e.
In Run-1 we saw only a weak scattering of the beam ions at late times (t >_4000) into the velocity

region between the two counterstreaming beams outside the central region of the simulation region. In contrast, in
Run-2 we find that wave-particle interactions plays a significant role in coupling and mixing the counterstreaming

ion beams. This can be seen from the phase-space plots for t"> 1400 in Figures 4c to 4f. The plot at t- = 1400

shows that ion-ion instability has occurred outside the central region and it is sufficiently strong to locally couple

the ion beams. The instability is more clearly manifested in the potential plots given in Figures 4g to 4g. The

corresponding electron phase space plots are shown in Figures 4m to 4r. Both electron and ion phase space show
formation of vortices, which evolve from the ion-ion instability driven by the counterstreaming ions. We now

examine in detail why this instability is so prominent in Run-2, but not in Run-1.

Ion-Ion Instability: The conditions for the ion-ion instability in a plasma having counterstreaming ion beams

depends on a number of parameters of the beam-plasma system: these parameters are the relative beam velocity

Vbr between the two beams, the ratios of the beam temperatures Tbl and Tb2 to the electron temperature Te,

and the relative densities of the ion beams nbl /rib2 [Fried and Wont, 1986]. The relative velocity and the

temperature ratios Tbl / Te and Tb2 / Te play crucial roles in determining whether the instability occurs or not.



For two symmetric counterstreaming ion beams, i.e., Vbr = 2 Vb , where +Vb are the two beam velocities, and

Tbl = Tb2 = T/, the instability occurs when [McKee, 1970]

1.3Fti < Vb < C s and Te > 3 77i (I)

where Cs is the ion-acoustic speed givenby Cs = (k(T e +3_)/m_) 1/2 and Vti = (k T//m_) 1/2.

For non-symmetric beams it is not possible to give analytical conditions as above for the symmetric ones.

However, some qualitative assessments can be made; if one of the beams is warmer than the other, say Tbl > Tb2 ,

instability occurs as long as the velocity condition in equation (I) is met and Te / Tbl > 3 [Baker, 1973; Gresillon

and Doveil, 1975; Singh, 1978]. However, Fried and Wong [1966] have shown that when one of the beams is
sotticienfly cold depending on the relative beam density, the instability can occur even if the warm beam satisfies
the condition Tbl ] Te = 1.

NOWwe examine if the instability conditions described above are met in our simulations. Figure 5 shows
examples of ion velocity distribution function from Run-I; the distributions shown here are from the off-central

region 4000 < _ < 4500, where relatively slow ion beams are more likely to meet the condition for the ion-ion
instability. Note that in this figure the horizontal scale is the ion velocity normalized with respect to the thermal

velocity Vti = (k TO/_.)1/2. The distributions shown in Figure 5 are for (a) t = 4000, (b) ?-= 6000, and (c)

?-= 8000; we noticed earlier from Figure 2 that at such late times the beam ions weakly scatter to fill in the
velocity space between the two ion beams in the off-central region.

The instability conditions discussed above are for a Maxwellian velocity distribution, but we note from
Figure 5 that the distributions are not Maxwellian. However, effective beam velocities and temperatures as first
and second order moments of the individual ion beams can be calculated, and they are given in Table 1. Note that
the velocities given in this table are normalized with respect to Ira. The ion beams for VII< 0 and VII> 0 are

called beam-1 and beam-2, respectively. The relative beam velocity Vbr = Vb2 -Vbl and the ion-aconstic speed

are also tabulated. We find from Table 1 that the beam temperatures do satisfy the condition for the instability
given by equation (1). However, the relative beam velocity is too large to excite the instability, that is, Vbr > 2Cs;

thus the ion-ion instability, as predicted from the linear instability analysis for Maxwellian ion beams, should not
occur. However, as noted earlier, the beams are not Maxwellian; the fall of the distribution functions at velocities
below their respective peak velocities is quite sharp and the peak separation in velocity progressively decreases

from AV=3.1 at ?-=4000 to AV=2.6 at ?-=8000. Taking AV as Vbr we findthatthe

instability condition on velocity is marginally satisfied at ?-= 8000. The approach towards the marginal

instability causes an enhanced fluctuation in the plasma (e.g., see Ichimaru [1973]) and the consequent scattering
of ions in velocity space as mentioned earlier. Figure 6 shows evolution of the density fluctuations at

X" = 1500, 1000, and 500; we note from this figure that with the decreasing distance from the end of the flux

tube, the amplitude of the density fluctuation increases and therefore the fluctuations in the electric field also
increases. The fluctuation in the electric field scatters the ions, populating the velocity region between the ion
beams. The scattered ions appear as a "tail" to the velocity distribution function near F = 0 as seen from Figure
5c. In the central region of the flux tube, where the ion beams are quite fast and far from the marginal instability
condition, the fluctuations in the density and the electric fields are weak and scattering of ions is not seen (see
Figure 2e).

Table 1. Ion beam parameters from Run-1.

r

0.55 0.45

Vbb! _b2 _br _bl _b2 r, G

4000 -1.60 1.85 3.45 0.16 0.18 1 1.22

6000 0.52 0.48 -1.58 1.60 3.18 0.2 0.23 1 1.30

8000 0.51 0.49 -1.51 1.51 3.00 0.21 0.27 1 1.31



The evolution of the ion and electron velocity distribution functions from Run-2 are shown in Figure 7;

Figures 7a, 7b and 7c show the ion distribution functions at t = 1000, 1200 and 1400, respectively, and the

corresponding electron distribution functions are shown in Figures 7d, 7e and 7£ The distributions shown in these

figures are for the plasma in the region 4000 < X < 4500 and for times just before the onset of the ion-ion
instability leading to the formation of vortices in Figure 4. Table 2 shows the ion beam and plasma parameters
relevant for the linear instability analysis. The ion beams denoted by subscripts "1" and "2" are for Vii< 0 and

Vii> 0, respectively. All velocities given in this table are normalized with respect to Vte. Comparing

Vbr and Cs in the table, we find that by the time t- = 1400, the velocity condition on the instability is met,

i.e., Vbr <2C s. We note that the temperature condition for the i-i instability is also satisfied because

Tbl / Te = 0.13 and Tb2 / Te = 0.3. Thus, the instability occurs as manifested by the ion and electron phase-
space plots, and the potential distribution in Figure 4 for times t > 1400.

Table 2. Ion beam and plasma parameters from Run-2.

r

1000 0.93

nt,2

0.07

1200 0.87 0.13

0.821400 0.18

-0.096

-0.086

0.19

0.16

_br

0.32

0.28

0.21

0.32

_b2

0.58 2.6

0.37 0.74 2.8 0.1

0.42 1.00 3.1 O. 12

Electron-Ion Instability: It is noteworthy that in Run-2 electron heating is the key for fulfilling the instability
condition by increasing the ion-acoustic speed; Table 2 shows that the electrons are heated to an effective

temperature of 3.1 To by t"= 1400. How are the electrons heated? We discuss here the mechanism for the

electron heating.
In an ion beam-plasma system, e-i instability is yet another mechanism for exciting waves, which heats

the electrons [McKee, 1970]. The e-i instability occurs when the ion beams are relatively fast [Fujita et al., 1977;

Singh, 1978]. This instability is kinetic and it occurs as the slow (negative energy) wave of an ion beam undergoes
Landau damping by the electrons [Hasegawa, 1975; Singh 1978]. Such an instability creates density fluctuation at
frequencies less than the ion plasma frequency. In order to demonstrate that this instability does occur in Run-2,
we show in Figure 8a and 8b the evolution of the plasma and the potential by plotting Ke(t), _(t) and _(t)

at _' = 2500. Figure ga shows the evolution of the electron and ion densities. For t < 200, the central region

is nearly unpopulated with a plasma because the expanding plasmas from the sources at the end of the flux tube
have not yet reached there. From T - 200 to t- - 400, the central region is electron rich, and when l- > 400

the central region acquires a quasineutral plasma with ne =n i. The plasma density builds up to

-10 -2 n o by ?-=1000.

The electric potential shown in Figure 8b is expected to slowly evolve with the plasma build up in

response to the counterstreaming plasma expansion into the flux tube. This slow evolution is shown by a dotted-
line curve, which is the potential averaged over a time interval A _-= 100. The fluctuations superimposed on this

curve, as shown by the solid-line curve, are relevant to our discussion here. The frequency specuum of the
potential variation in Figure 8b is shown in Figure 8c. We notice that there is a broad peak in the frequency range

0.01 < f/fpio < 0. 1, where fpio is the ion plasma frequency in the source plasmas. For the time period of

simulation shown in Figure 8, the local plasma density at _r = 2500 is K < 10-2no, and hence the local ion

plasma frequency fpi < 0.1 fpio. Thus the low frequency oscillations are bounded by this local plasma



frequency. These low frequency fluctuations which have amplitudes upto 4 kTo /e, heat the electrons to a

temperature of upto 3 To as shown in Table 2.

Another mechanism which contributes to the electron energization deals with the spatial distribution of
the slowly time-varying potential as shown in Figure 4g. When the electrons expanding from the plasma sources
cross the midpoint of the simulation region, they see an accelerating potential. A signature of such acceleration is

the elongated tail of the electron velocity distribution function for VII> 0 at 7 = 1000 shown in Figure 7d.

Consequences of the Ion-Ion Instability: The plasma flow and the potential distribution in the flux tube are

significantly affected by the ion-ion instability as seen from Figures 4a to 4r. The instability occurs in the off-
central region and in the central region the ion beams continue to counterstream (Figures 4d to 40. At an early
stage, the instability occurs at relatively small scale lengths as seen from the potential distribution in Figure 4i.
The subsequent nonlinear evolution of the instability forms vortices, which grow in size as clearly seen from the
potential distributions for [ _ 1600 in Figures 4j, 4k and 4¢. The amplitudes of the potential associated with

the vortices are as large as 5 kTo /e, which approximately corresponds to the ion beam energy at [ = 1400

when the instability sets in, that is,

_ _.Vb_ ----q A¢_

where A_ is the amplitude of a vortex and Vb2 is the beam velocity of the faster ion beam. The above

relationship between Vb2 and AO suggests the possibility of trapping the ions in the vortices. This trapping is

evident from Figure 4. The cells with relatively high positive potentials have ions almost completely mixed in
velocity space and their velocity spread is reduced in contrast to the relatively large velocity spread in the
neighboring negative potential cells. As a matter of fact in the latter cells ions have a "hole" in their velocity
distribution function, which is a signature of an ion hole. The electrons' behavior is directly opposite to that of the
ions; electrons have large velocity spreads in the positive potential cells and a relatively small spread in the
negative potential cells (see Figures 4p, 4q and 40. This alternate trapping of electrons and ions affects the flow of
plasma and density distribution in the flux tube. Before we discuss the density distribution and the filling of the
flux tube, we point out that another consequence of the ion-ion instability is the formation of electrostatic shock-
like structures.

Electrostatic Shocks: The electrostatic shock-like structures evolve from the ion-ion instability; the vortices
having positive potential cells begin to grow in she with increasing time and their edges steepen into shock pairs.
The potential distribution plots for /"> 1400 show examples of the formation of some shock pairs as indicated by

arrows in Figures 4j, 4k and 4e. Inside a shock pair the potential is positive; ions are mixed and electrons are
trapped showing their acceleration above the background electrons. The growing size of a positive potential cell is
equivalent to the motions of the shocks bounding the cell. This can be seen by comparing the innermost shock
pairs on the right-hand side of the center of the simulation region in Figures 4k and 4e. The motion of shocks
enables the positive potential cells to merge together. This elevates the potential of the outer region of the flux tube
with respect to its ends, as well as with respect to the central region where the potential is negative in a relatively
extended region.

We see from Figures 4d to 4f and 4j to 4e that as the innermost shocks bordering the central
counterstreaming move inward, the size of the central counterstreaming region decreases. However, this does not
continue indefinitely. The evolutions of the ion and electron phase space and that of the potential distribution, for
times later than that shown in Figure 4, are given in Figure 9. Figures 9a to 9c for the ion phase space and the
corresponding potential distribution in Figures 9g to 9i show that for [ > 2200, the central region of ion
counterstreaming expands again as the innermost shocks move outward. The corresponding electron phase space
plots in Figures 9m to 9r show that in the central negative potential region the electrons' velocity spread shrinks.
Why do the innermost shocks move outward again? The answer to this question lies in the change in the plasma
influx into the tube caused by the elevation of the positive potential in its outer regions due to the merging of the

positive potential cells as shown in Figures 4k and 4 e. The elevated potential chokes the plasma flow into the flux
tube. When the ion flux is reduced, the inner shocks begin to move outward to maintain the continuity of the ion
flux through the shocks. This phenomenon of shock motion is quite similar to the motion of double layers seen in
numerical simulations [Singh and&hunk, 1982] and laboratory experiments [Iizuka et al, 1983]; in these studies
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it was found that when ion flux to an existing double layer is reduced, the double layer remains stable in its shape,

but it moves toward the ion source to keep the ion flux through the double layer at a constant value. The shock and

the double layer are both electrostatic structures and it appears that the shock also remains stable in response to the

changes in the ion flux by moving in an appropriate direction. For the outward shock motion of the shock in

Figure 9g to 9j, the shock velocity is found to be V_h -- Va- from t = 2200 to 2800. At later times the i-i

instability again inflicts the counterstreaming ion beam as seen from the plots for 7 > 2800 in Figure 9. This

mixes the ion beams in the outer region of the counterstreaming, but leaving the ions counterstreaming in the

central region. It appears that the above process of i-i instability in the outer region, formation of positive potential

cells and their merging, shock formations and their motion may repeat a few times before the flux tube fills with a

thermalized plasma.
The formation of shocks in the off-equatorial region is predicted by two-stream hydrodynamic models

[Rasmussen and&hunk, 1988; Singh, 1990]. But these shocks form due to the slowing down of the ion beams by

polarization electric fields and/or Coulomb collisions. A semikinetic model of interhemispheric plasma flow does
not show shock formation [Wilson et al., 1992]. Recently Singh et al., [1994] found that in a semikinetic model,

which treats electrons by assuming a Boltzmann distribution, the condition on the electron to ion temperature for

the ion-ion instability is not met. Our small-scale simulation discussed here show that temperature conditions can
be satisfied by the electron heating due to the electron-ion instability which is driven by relatively fast ion beams

and occurs during the early stage of the reflling. When electron dynamics is simplified by assuming the

Boltzmann law, this instability is lost along with the associated consequences of electron heating, ion-ion

instability and shock formation.
It is important to point out that dynamics of the shocks seen in two-stream hydrodynamic models is quite

different from that seen in Run-2. In the former case a shock forms in each stream in the off-equatorial region and

subsequently it moves upward to the equator and then downward to the ionospheric boundary. Such shock motions
affect the transition from supersonic to subsonic flow for each plasma stream [Singh, 1991a]. The resulting

subsonic flows continue to counterstrearn indefinitely. On the other hand, Run-2 shows that the counterstreaming

in the off-equatorial region is rather quickly thermalized by the ion-ion instability and it persists over a longer time

only in the eentral region. However, as seen from Figures 4 and 9 the spatial extent of the central
counterstreaming is quite dynamic. Furthermore, we find that the i-i instability should lead to the formation of

several shock pairs evolving from the positive potential cells created by the instability. The evolution and merging

of such shock pairs has a profound effect on the state of the plasma in the central (equatorial) region.

Flux Tube Filling: The ion-ion instability and its nonlinear evolution affect the filling of the flux tube in several

ways, which we discuss here. Figures 10a and 10b show the comparison of the ion density distributions from Run-

1 and Run-2 at t = 2000 and 3600, respectively. Figure 10a shows that compared to Run-l, in Run-2 the filling

is depressed in the central region while it is enhanced in the off-central region at t = 2000. The explanation for

this feature of the filling lies in the potential distribution as shown in Figures 4j to 4 _. The elevated potentials in

the off-central region inhibit the flow of plasma into the central region; this keeps the ion density depressed there
and therefore the plasma entering the flux tube accumulates in the outer regions of the flux tube. We find that

until about t" = 2000 the net plasma contents of the flux tube in Run-1 and Run-2 are approximately the same.

This is seen from Figure 11, in which the total number of computer ions accumulated in the flux tube is plotted as

a function of time for the two runs.

Figure lOb shows that eventually the ion densities in the central region of the flux tube in the two runs

become nearly equal. This is due to the fact that the potential barriers for the ions in the outer region of the flux

tube reduces as seen by comparing the potential distributions in Figures 4j, 4k and 4 t_ for t < 2000 with those

in Figures 9g to 9£ for i- > 2000. However, the densities in the off-central region in Run-2 remains generally

larger than that in Run-l. This yields a larger plasma content in the former run than that in the latter. Figure ll

clearly shows this for i" > 2000. The enhanced refilling in Run-2 is attributed to the trapping of ions and

electrons in the vortices set up by the ion-ion instability.



4. Conclusions and Discussion

The main conclusions of this paper are the following:
1. As the magnetic flux tube fills with a plasma expanding from plasma sources located at its end, the ion-beams

driven instabilities significantly affect (a) the distribution and dynamics of the plasma in the tube, and Co) the
accumulation of plasma in it.

2. Two types of instabilities are found to occur: the instability caused by electron-ion interaction is kinetic in
nature and occurs when the ion beams are relatively fast, and electron dynamics is not simplified by the
assumption of the Boltzmann law. The ion-ion instability occurs for comparatively slower ion beams.

3. In the simulation with the Bol_ electron, the electron-ion instability is suppressed and the ion beams
remain too fast with respect to the ion-acoustic speed to excite ion-ion waves. However, as the beams slow
down by the filling of the flux tube, they tend toward the marginal instability, especially in the outer region of
the flux tube, where the plasma fluctuation is enhanced. This causes an anomalous scattering of the beam
ions in the outer region.

4. In simulation with the kinetic treatment of the electrons, e-i instability occurs when the beams are relatively
fast and it heats the electrons. In addition, some electron energization occurs when they are accelerated by the
inward pointing electric fields set up by the counterstreaming plasma expansion. When electrons are
sufficiently heated, increasing the ion-acoustic speed so that Vbr <_2 Cs , the ion-ion instability occurs.

5. The ion-ion instability is effective in coupling the counterstreaming ion beams in the region where instability
conditions are met. This sets up potential structures including electrostatic shocks. The central
counterstreaming is seen to spatially shrink and expand as the ion-ion instability and its nonlinear features
affecting the plasma evolve.

6. The trapping of plasma in the potential structures enhances the flux tube refilling and affects the distribution
of the plasma in it.

7. In the central region of the flux tube where the magnetic field is minimum, the fast ion beams continue to
counterstream over a relatively long time.

Following the work of Banks et al [1971], now there are several studies on shock formation including
large-scale hydrodynamic [Singh et al, 1986; Guiter and Gombosi, 1991; Rasmussen and Schunk, 1988] and
kinetic models [Wilson et al, 19992; Singh et al, 1994] and small-scale simulations [Singh et al, 1986; Singh,
1988]. The usual picture emerging from such studies is the formation of a pair of shocks in the equatorial region
or in the off-equatorial region, one in each hemisphere. The simulation presented here suggests that when i-i
instability occurs, it may create numerous shock pairs in the off-equatorial region. Their merging aud dynamics
may introduce both spatial structures in the plasma distribution and temporal features in the evolution of the
plasma state, both in the equatorial and off-equatorial regions.

In view of the above results, a pertinent question is whether they are relevant to the refilling of
plasmaspheric flux tube. Since the ion beams are inherent to the early stage refilling, the answer to this question is
solidly yes. In view of the crudeness in the temporal and spatial resolution of the large-scale refilling models, the
most pertinent question is how to include the effects of the instability in such models. At this juncture the answer
to this question is not very clear, but we know that it must be done by calculating anomalous plasma transport
coefficients which can be included in the large-scale treatments. The heating of electrons and ions by the
instability can be included through an anomalous collision frequency like that for ion-cyclotron instability in the
auroral plasma [Ganguli and Palmadesso, 1987], but how to include the effect of ion and electron trapping in
potential structures set up by the ion-ion instability remains a challenge.

Acknowledgment: This work was supported by NASA grant NAGW-2128 made to the University of Alabama in
Huntsville.
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FIGURE CAPTIONS

Figure 1. (a) Geometry of the simulation; the magnetic flux tube and the two plasma reservoirs at the ends of the
tube are shown. The flux tube fills with plasma when the plasmas from the reservoirs expand into it. (b) Magnetic
field distribution in the flux tube; the mirror ratio is 10.

Figure 2. Evolution of ion phase-space in X-V u plane from Run-1.

Figure 3. Plasma density distributions at some selected times from Run-1.

Figure 4. (a) to (f) Evolution of ion phase-space in the X- VII plane from Run-2. Note the coupling between

the ion beams due to ion-ion instability for / >_1400. (g) to (g) Potential distribution corresponding to the

phase-space evolution in Figures 4a to 4£ The arrows in panels j, k and e show the evolution of the shock pairs
from the positive potential cells created by the ion-ion instability. (m) to (r) Evolution of electron phase-space in

the X- VII plane.

Figure 5. Ion parallel velocity distribution functions from Run-1 at some selected times in the region

4000 < X _ 4500, where scattered ions were seen for /" >_4000.

Figure 6. Temporal evolution of density fluctuations at (a) _' = 500, (b) _ = 1000 and (c) _ = 1500.

Note the increase in the fluctuation amplitude with decreasing ][r.

Figure 7. Ion parallel velocity distribution functions at times (a)/" = 1000, Co)? = 1200and (c)/ = 1400. The

distributions are for the ions in the region 4000 < X < 4500. The corresponding electron distributions are

shown in (d)/ = 1000, (e)/" = 1200 and (f)/" = 1400.

Figure 8. Temporal evolution of (a) Electron and ion densities. (b) Electric potential _, all at _ = 2500. (e)

Frequency spectrum of the potential shown in 0a). The dotted curve in (b) shows the average potential when the
fluctuations are averaged out.

Figure 9. Same as Figure 4, but the plots are for t- > 2000. Note the temporal variation in the spatial extent of
the central counterstreaming and the associated charges in the potential distribution.

Figure 10. Comparison of the density distributions in the flux tube from Run-1 and Run-2 at (a) ]- = 2000 and

(b) i= 3600.

Figure 11. Comparison of the flux tube contents from Run-I and Run-2. Note the enhanced filling in Run-2.
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Abstract:

Equatorially trapped hot plasmas are a common feature of the outer plasmasphere, where flux tube
refilling with cold ionospheric plasma occurs after magnetic storms. The role of the hot plasma consisting of hot
anisotropic ions and isotropic warm electrons in the refilling process is examined by means of numerical
simulations using a one-dimensional particle-in-cell code. Simulations are performed on the filling of an artificial
flux tube having a minimum magnetic field at its center. We have performed two types of simulations; in one type,
called here Run-A, we allowed cold plasmas to flow into a centrally trapped hot plasma consisting of warm

isotropic electrons and hot anisotropic ions with perpendicular temperature T± > _, the parallel temperature.

Run-A reveals a variety of plasma processes relevant to the plasmaspheric refilling affected by the presence of a hot
plasma, including formation of propagating electrostatic shocks, intrinsically unstable plasma distribution
functions produced by the mixing of hot and cold plasmas, weak downward electric fields supported by an
extended potential distribution in the relatively late stage of the evolution of plasma in the flux tube, and an
enhanced flux tube filling. In the other type of simulation first a cold plasma flow was allowed to set up in the
flow, then a hot plasma consisting of the isotropic electrons and anisotropic ions (T± > TII) was suddenly injected

into the central region of the flux tube. In this case the main distinguishing feature was the formation of relatively
stable shocks near the mirror points of the centrally trapped hot plasma. The shocks were found to be standing,

unlike in the previous type of simulation. Since the standing shocks form near the effective mirror points of the
centrally trapped hot ions, they are called mirror shocks to contrast them from the moving electrostatic shocks seen
in Rtm-A. The stability of the standing shocks was found to increase with the decreasing temperature of the warm
electrons injected with the hot plasma. Wherever possible, similarities between the results from the simulations
and those from observational data are pointed.

1. Introduction

In a companion paper [Singh and Leung, 1994], hereafter referred to as Paper 1, we have studied the role
of ion-beam driven plasma instability in filling a magnetic flux tube with a cold plasma. In this paper, we extend
that study by including a hot plasma population trapped in the central region of the flux tube where the magnetic
field is minimum as shown in Figures la and lb. This study is motivated by the fact that the outer region of the

plasmasphere is always populated by a hot plasma of plasmasheet and the ring current origins [Roux et al, 1982;
Deforest et al, 1971]. Furthermore, at times a warm plasma population is created when cold ions in the equatorial
region are transversely heated by waves generated by the hot plasma population [Olsen et al, 1987]. How do these
warm and/or hot plasma populations affect the flow of cold plasma and the refilling of the plasmasphere? The
purpose of this simulation study is to develop an understanding of the plasma processes driven by hot-cold plasma
interactions, which are relevant to the plasmasphere.

The simulations show that a hot and/or warm plasma consisting of warm electrons and hot anisotropic

ions with T± > TII where T± and TIIare the perpendicular and parallel ion temperatures, respectively, have a

profound effect on the flow of cold plasma and its accumulation in the flux tube. The hot plasma injection creates

a potential barrier for the ions in the cold plasma flow. When the cold plasma flow comes into contact with the
equatorially trapped hot plasma and the associated potential barrier, electrostatic shocks form near the contact
points. The shocks propagate away from the hot plasma thermalizing the plasma behind it and leaving behind an
extended potential distribution which is effective in trapping the cold ions and in enhancing the filling of the flux
tube. On the other hand, when the hot plasma is injected into the cold plasma flow with persistent

counterstreaming ion beams in the central region of the flux tube [Singh and Leung, 1994], standing shocks form
with a relatively stable potential structure localized in the minimum magnetic field region. The stability of the

standing shocks increases with decreasing temperatures of the warm isotropic electrons injected with the hot
anisotropic ions.

When the hot and cold plasma spatially mix together, unstable plasma distribution functions are created;
the salient feature of the ion perpendicular velocity distribution is that a ring distribution forms around the core of
cold ions. The minimum energy of the ring distribution approximately corresponds to the potential barrier set up
by the hot anisotropic ions. Such low energy rings can drive lower-hybrid and/or magnetosonic waves below and
near the lower-hybrid frequency [Lee and Birdsall, 1979], which can heat the cold ions. This is in contrast to the
energetic ( > 5 kel/) ion rings produced by the injection and transport of ions [Roux et al, 1982; Deforest and
Mcllwain, 1971]; such energetic rings create waves which are too fast to resonate with the cold ions and, therefore,
are ineffective in heating them.



Thesimulation model used in this paper is the same as discussed in section 2 of Paper 1. However, in the

simulations described here we include a hot plasma in the central region 2300 < _ _<2700 (Figure la). The
properties of the hot plasma and the timing of their injection are described later at appropriate places. Some initial
results from the present study were reported earlier [Singh, 1993].

The rest of the paper is organized as follows. In section 2 we describe the results from the simulation in
which hot plasma is injected initially at time t = 0. In section 3 we describe the results from the simulation in
which hot plasma is injected at a later time when the cold plasma flow is already set up in the flux tube. The
properties of the velocity distribution functions of electrons and ions as seen from the runs are described in section

4. Section 5 deals with the filling of the flux tube with cold plasma. The conclusions of the paper are given in
section 6.

2. Cold Plasma Flowing into a Hot Plasma

We first discuss the results from a simulation in which cold plasmas expanding from the plasma
reservoirs in Figure la come into contact with the hot plasma trapped in the central region of the flux tube where
the magnetic field minimizes (Figure lb). Hereafter we refer to this simulation as Run-A. The situation

considered in this simulation corresponds to that of the fast ion streams flowing into the equatorially trapped hot
plasma during the early stage of the plasmaspheric refilling. Some preliminary results from this run were
presented in a previous paper [Singh, 1993]. The hot plasma has the following properties;

T/H = 2 _H = 1800 TO and Tell = Te_I = Te = l 0 TO, where TO is the cold plasma temperature in the plasma

reservoirs. When the hot plasma is the only plasma in the flux tube, the difference between the temperature
anisotropy of electrons and ions sets up electric fields pointing away from the central region and the corresponding
potential distribution is given by [Whipple, 1977]

_(x) = (kT/l_r / e)[1 + _1{/ / Te ]-1 gnl" (1)

where /-'= (T/H / _1_/) (1 - Bm / B(x)) + B m / B(x), Bn, is the minimum magnetic field, and B(x) is the

magnetic field at the point where the potential is _(x).

When Bn, / B << 1 and Te << _, equation (1)is simplified to _(x) -_-(kT e / e) en(T, / For

Te = 10 TO, and _H / _1_/__ 2, the potential difference between the point of minimum magnetic field and the

point where the magnetic field is B(x) is about 7 kT o / e. This maximum potential drop is expected without

any cold plasma in the flux tube.

Large-scale refilling models [Singh et al, 1986; Wilson et al, 1992] indicate ion flow velocities upto 30
km/s during the early refilling stage, the corresponding kinetic energy of H + ion beam is < 5 eV, which is

smaller than the maximum potential energy of the ions estimated above for TO = I eV. Thus, the hot plasma is
expected to have a significant effect on the flow of cold plasma, and hence on the refilling processes.

We performed several simulations in which hot plasma properties were varied. We found that as long as

hot ions are anisotropic with _H > _1/_ and the warm electrons are isotropic or anisotropic with the reverse

anisotropy, that is, Tel//> Tell, the basic effects of the hot plasma on the cold plasma flows are the same.

Therefore, we describe here only the results from the simulation run with the hot plasma properties as mentioned
above.

Figures 2a to 2g shows the evolution of the ion phase-space in the _-_ill plane. Figure 2a for

t- = 200 shows the expanding ion beams from the plasma reservoirs at X = 0 and X = d. For showing some
details of the cold ion phase space, the vertical scale in Figure 2 is expanded and it does not fully show the velocity
space of the hot ions. At [ = 400 (Figure 2b), the ion beams begin to come into contact with the hot plasma.
The plot at /-= 600 (Figure 2c) shows that the incoming ion beams are being reflected. This reflection is

expected because the potentials set up by the hot plasma provide sufficiently large barriers for the approaching ion
beams. The evolution of the potential distribution corresponding to that of the phase space (in Figure 2) is shown

in Figure 3a to 3p. An important feature of the potential distribution is the occurrence of a potential pulse
coinciding with the central hot plasma for t < 1000. The peak potential at t- = 200 is 15 kT o / e, which is

nearly double the potential predicted by equation (1). The development of the large potential is attributed to the



spacecharges developing in the system. In contrast, equation (1) is based on the assumption of a quasineutral
plasma. The expansion of the cold plasma compresses the potential pulse as seen from the plots in Figure 3 for
200 _<? -< 800, alter which the edges of the pulse steepen into shock like structures and the pulse broadens again
and slowly diminishes in amplitude reaching an asymptotic value of about 5kTo/e at i= 1400. The

broadening of the potential pulse is associated with the outward propagation of the shocks. The evolution of the
potential distribution at later times is affected by the shock propagation and, outside the central region between the
two shocks, it is also affected by the ion-ion instabilities as discussed in Paper 1. The ion-ion instability creates

vortices in the X - V_I1 phase space as seen at 7 = 1600 in Figure 2g and the corresponding perturbations in the

potential distribution in Figure 3g.
It is useful to discuss the mechanism of the shock formation. When counterstreaming ion beams begin to

interpenetrate, a pair of electrostatic shocks form due to the coupling between the ion beams affected by the ion-ion
instability [Forslund and Shonk, 1970; Singh, 1990]. As we discussed in Paper 1, in the absence of the central hot

plasma, the ion beams continue to counterstream indefinitely because their relative beam velocity Vrb is too fast

to satisfy the conditions for the ion-ion instability which are Vrb < 2 C s and Te > 3 _ where Cs is the

ion-acoustic speed and Te and _ are the electron and ion temperatures; the instability in the central region

does not occur even though the latter condition on temperature is satisfied due to the electron heating by the
electron-ion instability. In the present situation with the central hot plasma, the counterstreaming on both sides of

the hot plasma is created by the reflection of the ion beams by the central potential barrier. The relative ion beam
velocities between the counterstreaming ion beams on both sides of the potential pulse near the reflection point are

Vbbr0.5, 0.4, 0.32, and 0.26 at t- = 600,800, 1000 and 1200, respectively. We recall that central hot plasma
consists of a warm electron population with temperature Te = 10 To, which yields an ion-acoustic speed

= 0.16. Thus the condition for the ion-ion instability near the reflection point is satisfied for t >_1000. It is

important to point out that the shocks form just outside the region where hot ions are trapped; outside this region
the cold ions dominate and satisfy the temperature condition mentioned above. The instability couples and mixes

the counterstreaming ion beams forming a "mixed" plasma "tab" developing near the shocks, one on each side of
the central hot plasma (Figures 3e and 30; the plasma tabs appear in the phase space plots as the darkest areas
between the hot plasma and the counterstreaming ion beams. The extension of the tabs of mixed plasma along
with outward propagation of the shocks is clearly seen by comparing the phase space plots in Figure 2 for
t = 1200 to 2400. The outward propagation of the electrostatic shocks are indicated by the arrows in Figure

2f to 2i and Figures 3f to 3 e. After their formation at about i = 1200, shocks move away from the central

region with a velocity Vsh ---0.05Vte ---Vti, where Vte and Vt/ are the electron and ion thermal speeds in

the cold plasma, respectively.
As the shocks propagate out, ion-ion instability occurs in the regions ahead of the shocks as seen at

t = 1600, 2000 and 2400 in Figure 2, the instability creates vortexes in the phase space. The combined effects
of the shock propagation and the ion-ion instability mix the counterstreaming ion beams nearly all along the flux
tube as seen from Figure 2 for T > 2800. This mixing of counterstreaming ion beams all along the flux tube is

quite different from what we saw in Paper 1 that the counterstreaming persists in the central region (see Figures 4a
to 4f and 9a to 9f in Paper 1).

The evolution of the electron phase space, corresponding to those of the ion phase space in Figure 2, and

the potential distributions in Figure 3, is shown in Figure 4. The prominent features of the electrons before
t"_<400 are the two spatially-separated electron populations; the centrally trapped electrons in the potential well
shown in Figure 3 and the electrons expanding into the flux tube from the plasma reservoirs at X = 0 and
X = d. For t > 1200, we see the signature of the shock pair in the electron phase space; the centrally trapped

electrons develop sharp edges like the potential distribution (Figure 3) and the ion phase space (Figure 2), all

marked by arrows. Along with the outward propagating shocks, the centrally trapped electrons expand sway from
the central region. Even after the shocks have propagated out to the boundaries, the electron phase space shows a

gradual "bulging" from the ends to the central region, in agreement with the potential distribution in Figure 3 for
T >_2400 when the potential in the central region remains positive and the potential distribution has gentle

gradients giving electric fields _pointingtowards the ends.
Figures 2 and 4 for t < 800 show that as the cold plasmas expand to the central hot plasma, ion

beams are reflected while the electron gas is accelerated toward the center. Therefore, in the early stage the cold



ion beams are initially excluded from the central region, but eventually the electrons pull them into the hot plasma

region. When the cold electrons are accelerated by the central potential pulse, the additional negative charge
lowers the peak potential after [ > 600 as seen from Figure 3. This allows the cold ions to penetrate into the hot

plasma region. The penetration is clearly seen from the ion phase plots in the X - g l- plane as shown in Figure

5. As seen from Figure 2, at times prior to t" = 400 the hot ions trapped in the central region are separated from

the cold ions in the configuration space. Figure 5a shows the situation when the cold ion beams come into contact

with the centrally trapped hot plasma, having perpendicular velocities upto about _T_ = 9. As the cold plasmas

expand and the ions reflect from the potential barrier, there are accumulations of plasmas near the reflection points

forming fronts which move towards the midpoint of the simulation region as seen from the plots for
600 < [ < 1600 in Figure 5. By the time 7 = 1600, the cold ions have punched through the potential barrier,

and the further evolution of the X- Vx phase space does not reveal any new feature. The X - V.i phase space

plot at the end of the simulation run is shown in Figure 5d. Later we discuss the perpendicular velocity
distribution function of the ions consisting of the cold and hot populations as seen from this figure. The evolution

of the electron phase space in X - V.i does not reveal any noteworthy feature, except that, like the ions, electrons

have a warm population trapped in the central region along with the cold electrons.

Evolution of the plasma density distribution in the flux tube is shown in Figure 6. The density
distribution at t = 200 shows that the cold plasma is well separated from the centrally trapped hot plasma. The

maximum normalized density of the hot plasma is about 0.05. As the cold plasmas expand, eventually the density

maximum at the midplane (_" = 2500) disappears and a density minimum occurs there. In our simulation, this

occurs at about t = 800. In a recent paper Olsen et al [1994] suggested that the equatorial density distribution of

the trapped ions with T_ > TIi depends on the electron temperature anisotropy; specifically they suggested that for

isotropic electrons the trapped ion density distribution has a density maximum at the equator. On the other hand,

when TelI> Te.l. the density distribution has minimum at the equator. Our simulation shows that the occurrence

of the density maximum or minimum depends on the stage of the mixing of the cold and the hot plasmas. When

the hot plasma density dominates, the trapped ion density profile has a density maximum where the magnetic field

minimizes. When the cold plasma flow begins to dominate the hot plasma density, the maximum disappears and a
density minimum appears in its place.

The shocks seen in the ion phase space (Figure 2) and the potential distribution (Figure 3) are also seen

from the density distributions for [ = 2000 in Figure 6; the shocks are indicated by the arrows. Figure 6 shows

the filling of the flux tube with the cold plasma flowing into it from the plasma reservoirs. Later we discuss the

filling in more detail.

3. Hot Plasma Injected into Cold Plasma Flow

In this section we describe the modification in the cold plasma flow already set up in the flux tube, when a

hot plasma, like the one described in the previous section, is suddenly injected into the central region of the
simulation system. Hereafter we refer to this simulation as Run-B. The situation considered in this simulation

corresponds to the injection of the hot plasma in a relatively late stage of the plasmaspheric refilling. We have

already discussed in Paper 1 the evolution of cold plasma flow without a hot plasma. So far as the ion phase space

is concerned, we saw in Paper 1 that after t" > 2000 the main feature of the flow is that the ion instability mixes

the ion beams in the outer region of the flux tube while they continue to counterstream in the central region. We

also noted that the potential distribution in the central region is negative. The state of the cold plasma just before

the injection of the hot plasma ([ = 2000) is shown in Figure 7; Figures 7a and 7b show the ion phase space in

X - VtlI and X - V/.i. planes, respectively; the corresponding electron phase space plots are shown in Figures 7c

and 7d; and the potential distribution in Figure 7e. The injection of the hot plasma modifies the cold plasma flow
in several ways, which are discussed below.

The evohition of the ion phase space in X-_ll plane after the injection is shown in Figure 8. The

obvious features of the phase space, as seen from Figure 8, are (1) the coupling between the counterstreaming ion

beams in the central region where the hot plasma is trapped, and (2) generation of counterstreaming of ion beams

progressively increasing in extent on both sides of the hot plasma; the extension of the counterstreaming regions is

marked by arrows in Figures 8a to 8d. However, this newly generated counterstreaming does not last too long; the
ion-ion instability couples the ion beams and mixes them as seen from the plots in Figures 8d, 8e and 8£



The coupling of the ion beams in the region of the hot plasma is caused by the electric fields generated by
the hot plasma injection. Figure 9 shows the evolution of the potential distribution aRer the injection. Note that
just before the injection the potential distribution has a broad minimum in the central region (Figure Be). The plot
at /" = 2200 in Figure 9a shows that the hot plasma creates a potential pulse at the center. With increasing
time, the potential pulse broadens and its edges steepen somewhat. Furthermore, the negative potential regions on
both sides of the potential pulse grow in size from i = 2200 to /" = 2800 as indicated by the arrows. The

regions with negative potentials contain the counterstreaming ion beams shown in Figure 8 for the same time
interval. We point out here that the growing size of the negative potential region along with the ion
counterstreaming in it was seen in Run-2 of Paper 1 without the hot plasma as shown in Figure 9 of that paper.
Therefore, the extension in the size of the counterstreaming is not caused by the not plasma injection, but it is

caused by the outward motion of the shock-like structures marked by the arrows in Figure 7e due to the decrease of
the ion flux into the central regionby the vortices set up in the outer regions of the flux tube (Figures 7a and 7e).

This point is discussed in greater detail in Paper 1. The fluctuation in the potential distribution on both sides of the
pulse (Figures 9e and 9f) and the associated vortices in the phase space (Figures 8e and 8f) are caused by the ion-
ion instability, which is eventually seen to affect the potential pulse at late times /- >_3400, but the core of the
pulse is found to remain stable with an amplitude of about 2.5 kT o / e.

Injection of Hot Plasma with Colder Electrons: We repeated the above simulation (Run-B) by injecting a hot
plasma with electrons colder than that in Run-B; we chose Te = 3.3 To in contrast to 10 TO in Run-B. We refer

to this new run as Run-C. As before the hot plasma was injected at t = 2000 and the basic features of the

evolution of the plasma and potential prior to /" = 3000 were nearly the same in Run-B and Run-C. However, in
Run-C with the colder electrons the central potential pulse remains quite stable without being severely affected by

the ion-ion instability. This is shown in Figure 10; Figures 10a, 10b and 10c show the potential distributions at
/" = 3200, 3600 and 4000; Figures 10d, 10e and 10f show the corresponding ion phase space in X - V_II plane;

and similarly Figures 10g, 10h and 10i show the electron phase space. Note that Figure 10 shows the pulse
evolution over a longer time than that shown in Figure 9 for Run-B with the warmer electrons having Te = 10 To.

The potential distributions show that the stable potential pulse is flanked by negative potential regions in which
counterstreaming ions persist. In the central positive peak region electrons are trapped electrostatically (Figures

10g, 10h and 10i), while ions are magnetically trapped in the same region. In the neighboring negative potential
regions ions are trapped. In view of the alternate electrostatic trapping of the electrons and ions in their respective
potential wells, the central peak is an "electron hole" and the negative potential wells on both sides of the potential
pulse are "ion holes." This combination of the central electron and ion holes is remarkably stable at least over a
time period A/" = 20,000 which is about 160 ion plasma periods. For a local plasma density of 10cm -3, we

expect that the pulse should be stable for a time period of at least a few hundreds of milliseconds, and it should be

easily observable from satellites. Olsen et al, [1987] have reported examples of equatorial plasma showing a sharp
transition between counterstreaming field-aligned flows and an eqnatorially trapped highly anisotropic warm ion

population. The central distribution of plasma and the potential, as shown in Figure 10, are qualitatively similar to
the situation reported by Olsen et al [1987], although at a quite different spatial scale. Our simulations show that
the transition between the field-aligned counterstreaming and the trapped ions occur near the effective mirror

points of the latter ions. Therefore, we call the transitions mirror shocks to contrast them from the propagating
electrostatic shocks seen in Run-A.

4. Plasma Distribution Functions
We discuss here some interesting features of the electron and ion velocity distribution functions produced

by the hot plasma injection. We found that the results on the velocity distribution functions from the runs
discussed here did not differ significantly after the spatial mixing of the hot and cold plasmas. Therefore, in this

section we primarily discuss the distribution functions as seen from Run-A.
We examine the distribution functions from two regions of the flux tube; near the ends of the tube, say for

20 _<_ < 240, and in the central region covering 2300 _<_ < 2700. The evolution of the ion distribution
functions near the ends of the flux tube is shown in Figure 11. At early times (i - 200) the distribution shows
an ion beam flowing into the flux tube. Eventually precipitating ions appear as an ion beam for Vtl< 0, at

t" = 1000 the beam velocity Vb _ 0.24 V_e = 5Vti. Later on both the infiowing and the precipitating ion beams

5



are seen to broaden progressively with increasing time. Eventually the ion beams for VII < 0 and VII> 0 begin

to merge together and by the end of the simulation, the beams have completely merged. The above evolution of the

ion distribution function is the combined effect of the expansion of the cold plasma into the flux tube, loss of some
of the hot ions injected into the magnetic trap, reflection of the expanding ion beams from the electrostatic shocks

(see Figure 2) and the ion-ion instability. A noteworthy feature of Figure 11 is that the precipitating (VII < 0)

ions have energies greater than the infiowing ions. This merely reflects that some of the precipitating ions have

undergone acceleration by the potential distribution set up by the hot plasma. In the course of the simulation, the

midpoint (_= 2500) potential varies from about 18kTo/e to 2.5kTo/e (Figure 2). Thus, the

precipitating ions cover a spectrum of energy extending to about 15 kT o / e which corresponds to a maximum

velocity of about 0.3 Vte as seen in Figure 11 for VII< 0.

The electron velocity distribution function near the ends of the flux tube is shown in Figure 12. The main

feature of the electron distribution function is that at early times t" -- 200, the distribution is symmetric about

VII= 0 and it progressively becomes more and more asymmetric with energized electrons appearing for VII < 0.

The energization appears to occur primarily by the ion-ion instability, which transfers part of the ion beam energy

to the electrons. The ion-ion instabilities are clearly seen from the vortex formation in the J(- VII phase space

shown in Figure 2. Electron-ion instability is also likely to heat the electrons, especially during the early stages

when the fast ion beams begin to precipitate near J( = 0 as seen from Figure 11 for I --- 103.

The asymmetry of the ion and electron velocity distribution functions in the relatively late stage of the

filling of the flux tube, as shown in Figures 11 and 12, suggests that the plasmasphere refilling process in the

presence of equatodally trapped hot plasma generates a downward heat flow, which may affect the energy budget
of the topside ionosphere.

The evolution of the perpendicular velocity distribution functions of the ions and electrons neat the ends

of the flux tube do not shown any interesting features. Examples of such distribution are shown in figures 13a and

13b, which are approximately the distributions in the cold plasma reservoirs.

The mixing of the hot and cold plasmas in the central region produces distribution functions having a core
of cold ions and a halo of hot ions. Such parallel and perpendicular velocity distribution functions are shown in

Figures 14a and 14b, respectively. (These distribution functions are for the ions in the central region

(2300 _ _ _ 2700). In the parallel velocity distribution the cold core and the relatively hot ion populations are

merged, but in the perpendicular velocity distribution, the hot ions are well separated from the cold population and

they extend from a low velocity of V± = 0. 2 to large velocities corresponding to that of the injected hot plasma.

The hot ion population in Figure 14b appears as a beam in V±. Since in gyrophase these hot ions are randomly

distributed, the beam is a ring distribution in the perpendicular velocity. The ring distributions of energetic ions

with energies 5-30 keV have been observed in the equatorial region of the outer plasmasphere and they are known
to excite fast magnetosonic waves [Perraut et al, 198211 However, the ring distribution seen from the simulation is

considerably less energetic in the sense that its low energy end begins at an energy determined by the peak

potential of the positive potential pulse seen in the simulations (Figures 3, 9 and 10). The production of such a

ring distribution function has a simple explanation. The charged particles trapped inside a magnetic mirror have a

loss cone distribution extending to zero velocities as long as the pitch angle (a) of the ions at the point of minimum

magnetic field (Bmin) satisfies the condition a> sin -1 (R -1/2) where R = Bma x/Bmi n and Bma x is the

maximum magnetic field in the flux tube (Figure lb). However, the central potential pulse sets up electric fields,

which accelerate the ions with relatively low perpendicular energies into the loss cone and they precipitate out.

In view of the amplitude of the potential pulse evolving with time (see Figure 3), the maximum parallel

energy gain for the ions occurs during the early stage t < 1000. For the maximum pulse amplitude of _o = 18

(Figure 3), the parallel velocity of the ions accelerated by the potential pulse is

Vllmi n _ (2q q_o/ _.)1/2 __-_0.3Vte ' If such ions remain trapped inside the magnetic mirror as the potential pulse

evolves, the minimum perpendicular velocity at the midplane (J( = "¥'mid ) is given by

V±min -- (2q tpo / m/) 1/2 tan a o

where ct o = sin -1 (R-l/2). In our simulation R = l0 and we estimate that g±mia -- 0.1Vte. Figures 5 and 14

show that the trapped particles have perpendicular velocities V± > 0.2 Vte. The discrepancies between this value
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of V± and the above estimate for V.l_min is attributed to the temporal evolution and the fluctuations of the

potentials in the flux tube.
An interesting consequence of the low energy ring distribution is that it can excite a broadband waves

over a frequency range from ion cyclotron frequency to the lower hybrid frequency [Lee and Birdsali, 1979].
However, in our one-dimensional simulation the wave generation process is suppressed. If the waves are

generated, they can heat the cold ions, merging the cold core with the ring distribution. Composite perpendicular
velocity distribution functions having a cold core and a halo of warm ions have been measured from the Dynamic
Explorer-1 Satellite [Olsen et al, 1987].

The velocity distribution functions of the electrons in the central region are shown in Figures 15a and I Yo.

The parallel velocity distribution (Figure 15a) function shows a flat top distribution, indicating the trapping of the
electrons in a potential well set up by the positive potential in the central region. The perpendicular distribution in

Figure lYo shows a cold core along with a ring of warm electrons, which are trapped inside the magnetic mirror by
virtue of their large perpendicular velocities. The ring in the perpendicular velocity of the electrons have the
potential of driving electron cyclotron waves [Hasegawa, 1975].

5. Flux Tube Refilling
In Paper 1 we saw that the plasma waves enhance the filling of the flux tube by trapping plasma in

vortexes set up by the ion-ion instability. We find that the hot plasma injected into the central region of the flux
tube has a similar effect, although through a different process. We compare the filling of the flux tube as seen from
the simulations reported in this paper (Run-A and Run-B) and those in Paper 1. Figure 16 shows the comparison
of the flux tube contents from Run-2 of Paper 1, in which the filling was studied without the hot plasma, and Run-

A and Run-B of this paper. Curve 1 is the same as in Figure 12 of Paper 1, but it is translated along the vertical
axis by the initial number of the hot ions injected into the flux tube at t = 0 in Run-A. Curves 2 and 3 show the
evolution of the plasma content from Run-A and Run-B, respectively. The vertical translation of Curves 1 is done
for the purpose of easy comparison of the cold plasma contents of the flux tube as seen from the different runs. We
point out that the plasma content is just the total number of ions in the flux tube. Since each particle used in the
simulation is equivalent to a large number of the real ions, we call the simulation ions macroions or computer ions.

A comparison of Curve I with Curve 2 shows that the initially injected hot plasma facilitates the trapping of more
cold plasma than that from the run without the hot plasma. In the simulation with the initially injected hot plasma
(Run-A) enhanced trapping occurs by two processes: (1) the vortices set up by the ion-ion instability like that
shown by the enhanced filling in Run-2 (Curve 1) over that in Run-1 of Paper 1 (Figure 12 Paper 1); (2) the
potential pulse and its evolution in an extended potential distribution (Figure 3) provide an additional mechanism
for the trapping of the cold plasma. When cold plasma flows into the flux tube, the electric fields set up by the
extended potential distribution slowly retard the flow and increase the ion density in the flux tube. The effect of
this additional mechanism on the filling is illustrated in Figure 17, in which we compare the density profiles at the
end of the simulations in Run-2 of Paper 1 and Run-A described in this paper. We notice that the enhanced

density is confined in the central region from X --_103 to 4 x 103. One can argue that this enhanced density

is due to the centrally trapped hot plasma, but the comparison of the total plasma contents from Run-2 and Run-A
in Figure 16 clearly points out that the cold plasma content is enhanced. Since in Figure 17 the relative density
enhancement in Run-A occurs over an extended region only inside the central portion of the flux tube, it is obvious
that an additional amount of cold plasma is also contained in that region. The containment of the additional cold

plasma is facilitated by the retardation of the in/lowing ions by the relatively weak electric fields associated with
the extended potential distribution in Figure 3 for / > 2400

In Run-B, in which the hot plasma was injected after the cold plasma flow was well set up in the flux tube,

an enhanced refilling did not occur. In Figure 16, Curves 2 and 3 show the comparison of the total plasma
contents from Run-A and Run-B. Curve 3 (solid line) shows the sudden injection of the hot plasma at t- --_2000.

With the injection the total plasma content suddenly jumps from Curve 3 to Curve 1, but the content given by
Curve 3 (Run-B) remains slightly lower than that given by Curve 2 (Run-A) near the injection time and it
continues to show a lower value of the plasma content till the end of the simulation. We note that the contents

shown by Curve 3 and Curve 1 for t- > 2000 are quite close and are lower than that given by Curve 2 (Run-A),
indicating that the late injection of the hot plasma does not contribute to the enhancement in the filling with the

cold plasma. This is understood by noting that in Run-B the potential peak generated by the hot plasma does not
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evolveintopropagatingshocks,creating an extended potential distribution with weak electric fields, which plays a
key role in retarding the inflowing ions and in enhancing the cold plasma density in Run-A.

6. Conclusion and Discussion

The main aim of this paper is to study how a hot plasma trapped inside the minimum magnetic field
region of a flux tube affects the filling of the tube with a cold plasma. We performed two simulations: (1) by
injecting hot plasma initially and then allowing the cold plasma to expand into it, and (2) first a cold plasma flow
was allowed to establish in the flux tube and then the hot plasma was injected. The simulations presented here,
with the initial and delayed injection of the hot plasma, are illustrative examples of how hot and cold plasmas may
come into contact. In the case of the outer plasmasphere, the contact may occur in a variety of situations ranging
from the initial refilling stage with the cold plasma density < lcm -3 to that of a nearly filled plasmasphere with

densities of _ 103 cm -3. The hot plasma in both cases consisted ofbot anisotropic ions with TI- > Tll and warm

isotropic electrons. The simulations reveal new processes driven by the hot-cold plasma interactions. These
processes are summarized as follows.

Flow of Cold Plasmas into a Trapped Hot Plasma:
1) Hot plasma creates a potential barrier for the cold plasma flow. The magnitude of the potential differs from

that given by theory [Whipple, 1977] which does not account for the presence of the cold plasma. We show
that the potential evolves as the hot and cold plasmas interact.

2) The main feature of the evolution of the potential distribution is the formation and propagation of the
electrostatic shocks. We saw in Paper 1 that in the absence of the hot plasma, the counterstreaming expansion
of cold plasma in the flux tube sets up counterstreaming ion beams, which last for a relatively long time in the
central region. In contrast to this, the potential barrier set up by the hot plasma reflects the incoming plasma
flows on each side of the centrally trapped hot plasma. In the early stage the cold plasmas do not penetrate
into the central region of the hot plasma. The reflection of ion beams sets up counterstreaming on each side of
the hot plasma. The shock formation begins in the reflection region where beams are relatively slow and the
warm electrons give a relatively large ion-acoustic speed. These two effects create the conditions for the ion-
ion instability (see Paper 1), and hence the shocks form.

3) The propagation of the shock extends the positive potentials created by the hot plasma to large distances from
where the hot plasma is trapped.

4) As the shocks propagate away from the central region of the flux tube, ion-ion instability occurs in the outer
regions, as described in Paper 1. The combined effects of the shocks and the vortexes set up by the instability
create an extended potential distribution, in which central region of the flux tube remains generally positive.

5) The extended potential distributions help in trapping more cold plasma than that in the run without the hot
plasma. The trapping occurs by retarding the inflowing ions in the flux tube. Thus, the filling of the flux tube
with the cold plasma is enhanced by the presence of the equatorially trapped hot plasma.

6) The plasma distribution functions resulting from the hot-cold plasma interaction show some interesting
features. We found that the precipitating ion beams and electrons, which are leaving the simulation system,
are energized by the plasma processes occurring in the flux tube. This suggests that the hot-cold plasma
interaction ray eventually deposit some energy into the topside temperature during the refilling of a
plasmaspheric flux tube.

7) The ion velocity distribution function in the central region consists of a cold core and a halo of hot ions. In the
perpendicular velocity distribution, the hot ions appear as a ring starting at a low perpendicular energy which
approximately corresponds to the maximum potential barrier set up by the hot plasma population. Such ring
distributions can generate waves in the frequency band from the ion gyrofrequency to the lower-hybrid
frequency [Lee and Birdsall, 1979]. However, such waves cannot be studied by the one-dimensional
simulations used in the present work.

8) Even the electron perpendicular velocity distribution shows a ring, which are known to drive electron
1

cyclotron waves at frequencies f =- (n + _-) fee, where fee is the electron cyclotron frequency and n is

an integer [Hasegawa, 1975].



Injection of a Hot Plasma into a Cold Plasma Flow:
When a hot plasma is injected into a cold plasma flow already set up in the flux tube, we found the

following interesting results:
1) The hot plasma with anisotropic ions and warm isotropic electrons generates a positive potential pulse, which

is relatively stable as it remains confined to the central region. The stability of the pulse increases with colder
electrons in the injected hot plasma. The edges of the pulse appear like a pair Of standing shocks with
counterstreaming ions on both sides of the potential pulse. This situation is qualitatively similar to that found
in the equatorial plasmasphere with sudden transition between counterstreaming ions and the equatorially

trapped anisotropic ions with T± > Tll [Olsen et al, 1987].

2) The standing shocks form near the boundaries of the centrally trapped hot ions. Since the ions are trapped by
the mirror face, the shocks form near the effective mirror points and, therefore, we call them mirror shocks.
This nomenclature distinguishes these shocks from the electrostatic shocks created by the electrostatic

processes of ion-ion instability.
3) The injection leads to expulsion of cold plasma, reducing the plasma content of the flux tube relative to that in

the run with the initial injection of hot plasma.

4) The mixing of hot and cold plasma eventually generates plasma distribution functions similar to those shown
in Figures 14 and 15 for the run with the initial injection of the hot plasma.

The above results cannot be directly applied to the problem of plasmaspheric refilling. The purpose of

this paper is to study the variety of plasma processes driven by hot-cold plasma interactions which occur in the
outer plasmasphere. Some of the processes, such as the formation of shocks and the creation of the potential
distributions in the flux tube capable of trapping more plasma are well brought out by the one-dimensional
simulation. On the other hand, the results presented above indicate the possibility of some processes which need
multidimensional simulations. For example, the distributions shown in Figure 14 are inherently unstable and they
can excite waves in the frequency band from proton gyrofrequency to the lower hybrid frequency. Such waves have
been observed in the equatorial region and have been invoked to explain the heating of the cold ions [Olsen et al,
1987]. However, in the past it has been suspected that the waves are driven by energetic (5-20 keF) proton ring
distributions. The waves excited by such beams are too fast to resonate with cold ions and therefore they cannot
heat them. The low energy rings generated by the hot-cold plasma interactions can excite relatively slower waves,
which could heat the cold ions merging the cold plasma with the hot plasma ring in Figure 14. The merging is
likely to produce composite distribution functions with two temperatures as reported by Olsen et al [1987]. In a
recent paper Olsen et al [1994] suggested that the density distribution of the trapped ions in the equatorial region
depends on the electron temperature anisotropy. We found from our simulations that the nature of the density
distribution in the presence of the trapped ions depends on the evolution of the cold plasma density relative to that
of the trapped ions. When the latter density dominates a density maximum occurs at the equator, otherwise a
density minimum occurs when the cold plasma density dominates. This is found to be true when the electron
distribution has both trapped and field-aligned populations.
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FIGURE CAPTIONS

Figure 1. Geometry of the simulation. (a) The flux tube with the cold plasma reservoirs near its ends are shown.
The hot plasma is injected in the center of the flux tube where the magnetic field is minimum as shown in (b).

Figure 2. Temporal evolution of ion phase space in the ]_ - _l plane (Run-A). Note the central hot ions; the

entire distribution of the hot ions is not shown; it is tnmcated at Vdl = +l so that the cold plasma distribution can

be adequately resolved. Note the reflection of ions, formation and propagation of electrostatic shocks.

Figure 3. The temporal evolution of the potential distribution corresponding to that of the ion phase space in
Figure 2. Note the evolution of the shock from the potential pulse set up by the centrally trapped hot plasma.

Figure 4, The temporal evolution of the electron phase space in _' - _ell plane corresponding to that of the ions

in Figure 2 and the potential distribution in Figure 3.

Figure 5. Evolution of ion phase space in the _' - _T_ plane (Run-A). Note the presence of the centrally trapped

hot ions. At early times the expanding cold ions create density fronts when they come into contact with the hot
plasma as shown by arrows. The fronts eventually punch through the hot plasma mixing the cold and hot plasmas

spatially.

Figure 6. Temporal evolution of the total ion density in the flux robe (Run-A). At early times the hot plasma
creates a density maximum at the center. As the cold plasma fills the tube, the density maximum eventually

disappears. The signature of the electrostatic shocks in the density distribution is indicated by the arrows on the
density profile for t = 2000.

Figure 7. State of the cold plasma in the flux tube at t = 2000 just before the delayed injection of the hot

plasma (Run-B). (a) _ - _/ll ion phase space, (b) _ - l_-i±ion phase space, (c) _ - _ell electron phase space,

(d) _' - 17_e_Lelectron phase space, and (e) potential distribution.

Figure 8. Temporal evolution of the ion phase space in _ -_l plane (Run-B). Note the central mixing of the

counterstreaming ion beams shown in Figure 6a in response to the delayed injection of the hot ions. Also

noteworthy, is the extension of the counterstreaming on both sides of the hot plasma and eventual mixing by the
ion-ion instability.

Figure 9. Evolution of the potential distribution in response to the delayed injection of the hot plasma (Run-B).
Note the appearance of the potential pulse in the central region.

Figure 10. Stability of the potential pulse and its evolution into standing mirror shocks are shown when the
temperature of the warm electrons in the hot plasma is reduced from 10 TOin Run-B to 3 TO in Ran-C. (a) to (c)

Potential distributions. (d) to (f) Ion phase space in ]_ - _ldl plane. (g) to (i) Electron phase space in _7' _ _zll

plane from Run-C.

Figure 11. Evolution of the ion velocity distribution function _ (VII) near the end of the flux tube (

100 < X -<500, Run-A). Note the ions reflected ( VII< 0) from the central potential pulse created by the hot

plasma injected at t = 0. Eventually the inflowing and the reflected ions merge together. Asymmetry of the
distribution function suggests heat flux into the topside ionosphere.

Figure 12. Same as Figure 11, but for the electrons.
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Figure 13. Perpendicular velocity distributions (Run-A). (a) Ions and (b) Electrons (100 _<X _<500) at
t = 3600.

Figure 14. Ion velocity distribution functions at t = 3600 in the central region of the flux tube where hot and

cold ions have mixed. (a) _ (Vii) and (lo) F/(V±). Note the presence of the cold core ions and the hot ions

appearing as a halo in _ (VII) and a beam in F/(V±).

Figure is. Same as Figure 14, but for electrons. (a) F e (VII) . (b) Fe (V±). Note that the electrons trapped with

the ions have a flat top distribution in Fe (Vii) and a beam in Fe (V±).

Figure 16. Comparison of the flux tube plasma contents from Run-2 of Paper 1 and Run-A and Run-B of this
paper. Note that Curve 1 from Run-2 is vertically translated by adding the number of injected hot ions to its
plasma content. This easily brings out the additional filling with the cold plasma caused by the processes driven by

the hot plasma. After the hot plasma is injected at t = 2000 in run-B, the plasma content shown by Curve 3
closely follows Curve 1, and both remain below Curve 2.

Figure 17. Comparison of the density distributions from Run-2 in Paper 1 and Run-A with the injection of the hot
plasmas at t" = 0. The densities shown are for t = 3600.
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